Computational creativity and the future of AI

Binary star system found right under our noses


March 13, 2013

Artist's conception of WISE J1049-5319, with the brightly shining Sun 6.5 light years away...

Artist's conception of WISE J1049-5319, with the brightly shining Sun 6.5 light years away in the background (Photo: Pennsylvania State University/Janella Williams)

Image Gallery (3 images)

In a day when we have examined astronomical objects shining forth from a time shortly after the Big Bang, one would think astronomers have a pretty good handle on what is in the immediate vicinity of the Solar System. That's why the recent report of a binary star lying only 6.5 light-years away came as rather a surprise to the astronomical community. The pair, called WISE J1049-5319 A and B, are brown dwarf stars and only two star systems – the triple star Alpha Centauri, and Barnard's Star – lie closer to our Sun.

In December of 2009, NASA's Wide-field Infrared Survey Explorer (WISE) was launched into a polar orbit at an altitude of 525 km (326 miles) back in 2009. This small-scale space telescope was designed to perform a survey of the entire expanse of space in near- to mid-infrared wavelengths ranging from 3.4 to 22 microns. WISE examined the skies for over a year using extremely sensitive imaging sensors, in the process discovering room temperature stars, galaxies formed just after the Big Bang, tens of thousands of asteroids, protoplanetary disks, newborn stars, and more.

Brown dwarf stars are stars that have too little mass to fuse hydrogen (although deuterium is likely to fuse for a brief period). Interestingly enough, they are all about the size of Jupiter, regardless of their mass. Brown dwarfs are heated as they slowly collapse by conversion of their gravitational potential energy into thermal energy. The upper mass limit for a star to be a brown dwarf is about 0.07-0.08 solar masses, while the transition to being considered a large planet takes place by convention at 0.012 solar masses, where even deuterium fusion stops.

Prof. Kevin Luhman of Pennsylvania State University's department of Astronomy and Astrophysics took on the task of examining some of the 2.7 million photos taken by WISE for brown dwarfs (objects brighter in the mid-IR than in near-IR) that displayed large proper motion (movement relative to the more distant stars due to the relative velocity between the Sun and the object). Large proper motion implies the object is nearby, and intensity increasing toward longer infrared wavelengths implies cool (and therefore dim) objects that are even dimmer in visible light, and hence might have been overlooked.

Closest neighbors of the Solar System (Image: Pennsylvania State University)

WISE J1049-5319 was one of the objects selected by Luhman's search of the WISE database. It has a low galactic latitude (meaning that it appears against the bright background of the Milky Way), which may partially explain why it avoided detection until now. Once he had a location for the object, Prof. Luhman found it in earlier IR surveys and its parallax of was measured at 0.496 + 0.037 seconds of arc, corresponding to a distance of 2.016 parsecs (6.575 light years).

Gemini South reveals that WISE J1049-5319 is a binary star (Photo: NASA/JPL/Gemini Observa...

During a spectroscopic examination of WISE J1049-5319 using the Gemini 8.1 meter (26 foot) telescope, Prof. Luhman found that the object is actually a binary star system composed of two brown dwarfs currently separated by 1.5 seconds of arc. Their period of rotation around each other is about 25 years, which corresponds to a separation of about three astronomical units (approximately 449 million km). The spectrum revealed that the surface temperature of the stars is in the neighborhood of 1300 K (1850 F).

Beyond the simple pleasure in finding another very close star system and being able to study nearby brown dwarf stars, the discovery of WISE J1049-5319 could be ideal for developing methods for imaging exoplanets.

"It will be an excellent hunting ground for planets because it is very close to Earth, which makes it a lot easier to see any planets orbiting either of the brown dwarfs." Since it is the third-closest star system, in the distant future it might be one of the first destinations for manned expeditions outside our solar system," Luhman says.

In recent years, astronomy has taken enormous strides and continuously expands our understanding of the Universe, while at the same time alternately astonishing and tickling the fancy of the public. The astronomical bang for the buck is very large, and there is no sign that the surprises will damp down any time soon.

Sources: Pennsylvania State University

About the Author
Brian Dodson From an early age Brian wanted to become a scientist. He did, earning a Ph.D. in physics and embarking on an R&D career which has recently broken the 40th anniversary. What he didn't expect was that along the way he would become a patent agent, a rocket scientist, a gourmet cook, a biotech entrepreneur, an opera tenor and a science writer.   All articles by Brian Dodson

Since most of the generations of stars that have ever formed were probably too small to go nova and simply burnt out to dark cinders, most of this unobservable (dark matter) mass is most likely nothing more than just that. The rest of the mass probably lies in brown dwarf type objects. Nothing mysterious, just not visible. Discoveries of brown dwarfs this close described in this article confirms what I have always thought. Interesting how confident some people are about current theories but need mystical "Dark matter" to explain the inconsistencies.

14th March, 2013 @ 06:42 am PDT

Dark matter can not interact with electromagnetic waves at all - no emit no hide...

Sergey Sukhotskiy
17th March, 2013 @ 08:19 am PDT
Post a Comment

Login with your gizmag account:

Or Login with Facebook:

Related Articles
Looking for something? Search our 31,338 articles
Recent popular articles in Science
Product Comparisons