Highlights from the 2015 Geneva Motor Show

Microfluidic device designed for large-scale tissue engineering


August 2, 2012

A diagram of the tissue-producing device

A diagram of the tissue-producing device

Image Gallery (2 images)

Tissue engineering is definitely an exciting field – the ability to create living biological tissue in a lab could allow scientists to do things such as testing new drugs without the need for human subjects, or even to create patient-specific replacement organs or other body parts. While some previous efforts have yielded finished products that were very small, a microfluidic device being developed at the University of Toronto can reportedly produce sections of precisely-engineered tissue that measure within the centimeters.

The process starts with separate “biomaterials” being introduced to the device, via multiple channels. Those materials are then mixed together, forming into a sheet of what is known as “mosaic hydrogel.” This is a biopolymer that fosters the growth of cells into living tissues, so cells are seeded into the hydrogel as it’s being created.

A number of different types of cells can be used, and they are deposited into the gel with extreme accuracy – enough so that they can be placed in such a way that they replicate the cellular structure of a given natural tissue. One not-so-natural example of the device’s precise cell placement can be seen below.

An example of how precisely the device can place cells within the hydrogel

The cell-seeded hydrogels can simply be taken from the device in their existing sheet form, or they can be wound around a drum as they’re produced. If the drum is used, the gels can be built up into rolls that are many layers deep, which could serve as the source of three-dimensional blocks of engineered tissue. Exact thicknesses can be achieved simply through the number of layers used.

Presently, the researchers are looking into using the device to create skin grafts for burn victims. The technology is in the process of being commercialized by tech firm MaRS Innovation.

A paper on the research was recently published in the journal Advanced Materials.

Source: University of Toronto

About the Author
Ben Coxworth An experienced freelance writer, videographer and television producer, Ben's interest in all forms of innovation is particularly fanatical when it comes to human-powered transportation, film-making gear, environmentally-friendly technologies and anything that's designed to go underwater. He lives in Edmonton, Alberta, where he spends a lot of time going over the handlebars of his mountain bike, hanging out in off-leash parks, and wishing the Pacific Ocean wasn't so far away.   All articles by Ben Coxworth
Post a Comment

Login with your gizmag account:

Or Login with Facebook:

Related Articles
Looking for something? Search our 31,271 articles
Recent popular articles in Medical
Product Comparisons