Advertisement

University of Tokyo

Electronics

Flexible e-skin display is thinner than Saran wrap and tracks blood oxygen levels

From displays that curve to screens that swerve, flexible electronics is fast developing area of technology that promises to put a new twist on the way we absorb information. Bending televisions are an early example of this being adapted to the consumer world, and if a team of Japanese researchers has its way electronic skin (e-skin) won't be all that far behind. The team's new durable, flexing OLED display prototype is less than one quarter the thickness of Saran wrap and can be worn on the skin to display blood-oxygen levels, with the developers working to afford it other health-monitoring abilities, too.Read More

Science

Flexible pressure sensor could boost breast cancer screening

Pressure sensors in use today are fairly capable, being sufficiently flexible to adhere to uneven surfaces like human skin. However, once they're twisted more significantly, they're unable to accurately keep track of pressure changes. Now, researchers from the University of Tokyo have come up with a much more versatile option, creating a new sensor that's thinner than its rivals, and that can continue to sense pressure even when curved over a tiny radius.Read More

Materials

Material that could revolutionize memory storage is magnetic, but not as we know it

Using a type of magnetic insulator material that normally doesn’t conduct electricity, scientists working at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory have shown that electric currents can still be made to flow along the borders of the grains within the material. This latest research not only validates a long-held belief that magnetic insulators could be used to conduct electricity, but offers a more tantalizing possibility of creating highly-efficient magnetic memory devices.
Read More

Materials

Origami and the art of structural engineering

From military shelters and solar arrays to batteries and drones, engineers continue to prove that origami can be the inspiration for more than just paper cranes. The latest creation inspired by the ancient art of paper folding is a new "zippered tube" design that forms paper structures with enough stiffness to support weight, but can be folded flat for shipping or storage. The scaleable technique could be used in anything from microscopic robots and biomedical devices, to buildings and bridges.

Read More
Wearables

New conductive ink makes your clothing smarter

A new single-step printing process uses an elastic conducting ink to turn clothing and other textiles into flexible, wearable electronic devices or sensors. Researchers at the University of Tokyo developed the ink, which remains highly conductive even when stretched to more than three times its original length. They believe it has applications in sensors built into sportswear and underwear and that it could be part of a shift toward more comfortable wearable electronics.Read More

Electronics

New e-paper can be written on like a whiteboard

By repurposing and updating an e-paper technology from the 1970s, researchers from the University of Tokyo have created a cheap but tough new electronic display that can be written on with a magnet. This new e-paper could be used in low-cost, lightweight electronic whiteboards as well as traditional classroom blackboards, and its creators hope that it will eventually reduce our dependence on real paper.Read More

Electronics

HaptoMime lets users "touch" a mid-air display

Touchscreen interfaces may make our lives easier, but the things do tend to get smeared with finger oil and whatnot, plus they're notorious for spreading germs. That's why a team of researchers at the University of Tokyo, led by assistant professor Yasuaki Monnai, have developed the HaptoMime. It's an ATM-like interface that lets the user feel like they're touching a glass screen, when in fact they're touching nothing at all. Read More

Digital Cameras

World's fastest camera captures 4.4 trillion frames per second

At a mind-boggling 4.4 trillion frames per second (FPS), the new STAMP (Sequentially Timed All-optical Mapping Photography) system developed by two Japanese universities is claimed to be the world’s fastest camera. Taking pictures at a resolution of 450 x 450 pixels, the new image-capturing device is purported to be so fast that it can be used to photograph the conduction of heat, which travels at a speed equivalent to one-sixth the velocity of light.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning