more top stories »

University of Illinois

— Science

Graphene takes on a new dimension

By - June 28, 2015 2 Pictures

Graphene is the modern go-to material for scientists and engineers looking to create all manner of new electronic devices. From ultra-frugal light bulbs (both big and small), to super-efficient solar cells, flexible displays and much more, graphene is a multi-tasking marvel. However, in all of these instances, graphene in its original form of atom-thin, flat sheets has had to be used with peripheral supports and structures because it lacks a solid shape and form of its own. Now researchers from the University of Illinois at Urbana-Champaign have come up with a way of creating 3D objects out of graphene that opens up the possibility of fashioning a whole new range of innovative electronic devices.

Read More
— Electronics

Things heat up for self-destructing electronic devices

By - May 21, 2015 2 Pictures

Expanding on previous research into electronic devices that dissolve in water once they have reached the end of their useful life, researchers at the University of Illinois have developed a new type of "transient" electronic device that self-destructs in response to heat exposure. The work is aimed at making it easy for materials from devices that usually end up in landfill to be recycled or dissolved completely.

Read More
— Science

New technique allows for production of drug-delivering silicone microspheres

By - May 8, 2015 1 Picture

Scientists are increasingly looking at using medication-filled microspheres for targeted drug delivery within the human body. Silicone would be a particularly good building material for such spheres, as it's biocompatible, waterproof, and chemically stable. Unfortunately, using traditional methods, it can't be made into small enough spheres. Now, however, a new process has allowed for the creation of silicone microspheres that are about one one-hundredth the size of any previously produced.

Read More
— Robotics

Robobug: Scientists clad bacterium with graphene to make a working cytobot

By - March 25, 2015 1 Picture
By cladding a living cell with graphene quantum dots, researchers at the University of Illinois at Chicago (UIC) claim to have created a nanoscale biomicrorobot (or cytobot) that responds electrically to changes in its environment. This work promises to lay the foundations for future generations of bio-derived nanobots, biomicrorobotic-mechanisms, and micromechanical actuation for a wide range of applications. Read More
— Science

World's first plasmonic nanostructure recording could produce storage breakthrough

By - March 24, 2015 2 Pictures
The use of optical sound-on-film recording on early movie films revolutionized the motion picture industry and remained the standard method of audio recording in that medium for more than 80 years. Now researchers from the University of Illinois have emulated that feat in miniature by claiming to have recorded the world's first optically encoded audio onto a plasmonic film substrate. The size of human hair, this substrate has a capacity over five-and-a-half thousand times greater than conventional analog magnetic recording media. Read More
— Science

Engineered yeast could increase nutritional value of wine while reducing hangovers

By - March 18, 2015 1 Picture
Using a technique that cuts out unwanted copies of a genome to improve the beneficial properties of a compound, researchers working at the University of Illinois College of Agricultural, Consumer, and Environmental Services (ACES) claim to have produced a yeast that could vastly increase the quality of wine while also reducing its hangover-inducing properties. Read More
— Science

Machine automatically assembles complex molecules at the microscopic level

By - March 13, 2015 2 Pictures
The synthesis of complex small molecules in the laboratory is specialized and intricate work that is both difficult and time-consuming. Even highly-trained chemists can take many years to determine how to build each one, let alone discover and describe its functions. In an attempt to improve this situation, a team of chemists at the University of Illinois claim to have created a machine that is able to assemble a vast range of complex molecules at the push of a button. Read More
— Science

New research hints at Earth's inner core having its own inner core

By - February 10, 2015 2 Pictures
You may have been taught in school that the Earth is composed of layers, broadly separated into a rocky crust and mantle, outside of a liquid outer core and a small, solid iron inner core. It turns out, according to new research, that the inner core may itself have a distinct internal structure – an inner-inner core about half the diameter of the whole inner core. And this could reveal insights about our planet and its history. Read More
— Environment

MIT study finds carbon sequestration may not be as effective as expected

By - January 22, 2015 1 Picture
Carbon sequestration may not, according to researchers at MIT, be the panacea that some had hoped. A recent study, partially funded by the United States Department of Energy, has found that far less carbon dioxide than the ideal prediction of 90 percent may be turned into rock when sequestered. This means much might eventually escape back into the atmosphere. Read More
— Medical

Electronic implants treat staph infections, and then dissolve

By - December 2, 2014 1 Picture
Imagine if there were a remote-control electronic device that could be implanted at an infection site, where it would treat the infection by heating or medicating the affected tissue. While it might be very effective, subsequent infections could result if surgeons went in to remove it, or even if they just left it in place. That's why scientists from Tufts University and the University of Illinois at Champaign-Urbana have developed infection-treating implants that simply dissolve into the body once they've served their purpose. Read More

Subscribe to Gizmag's email newsletter