Advertisement

University of California

Science

Nanopillared surface inspired by insect wings counteracts bacteria

Keeping surfaces bacteria-free is particularly important when it comes to medical devices and implants. In a move that could replace the use of biocidal coatings and antibiotic drugs in such applications, scientists have developed a germ-repelling synthetic polymer inspired by the antibacterial powers of insect wings, which they say could form the basis of resilient new types of eye implants.Read More

3D Printing

Eavesdropping on 3D printers allows reverse engineering of sensitive designs

3D printers have opened up all kinds of possibilities when it comes to turning digital blueprints into real word objects, but might they also enable new ways to pilfer intellectual property? Amid all that mechanical whirring, these machines emit acoustic signals that give away the motion of the nozzle, new research has found. And by discreetly recording these sounds, scientists say it is possible for sneaky characters to deduce exact design details and reverse engineer printed objects at a later date.Read More

Science

Lockheed Martin shrinks the telescope

After 400 years, the original telescope design is getting a major upgrade. Part of a DARPA funded project, Lockheed Martin's Segmented Planar Imaging Detector for Electro-optical Reconnaissance (SPIDER) telescope replaces the large primary lenses used in refracting telescopes with an array of tiny ones that allow the instruments to shrink by a factor of 10 to 100.Read More

Biology

Mutant mosquitos with glowing red eyes offer eco-friendly malaria control

We've seen genetic engineering used in various ways in an attempt to combat the spread of malaria by mosquitoes, including rendering the insects flightless, altering their sense of smell, making them infertile, and making them unable to spread the disease. Now another approach has been added to the list with scientists at the University of California developing a CRISPR/Cas9 technique that could stop entire mosquito populations from transmitting the malaria parasite to humans.Read More

Electronics

Portobella mushrooms improve battery recipe

The number of electric vehicles and mobile devices is expected to surge over the coming decade, which would place considerable strain on our environment and resources as far as battery technology currently stands. In an effort to find more sustainable alternatives for battery materials, researchers from the University of California, Riverside have created a battery incorporating the skins of portabella mushrooms. The move not only has the potential to reduce the economic and environmental cost of battery production, but may also result in batteries whose capacity increases over time.


Read More
Medical

Scientists uncover potential biomarker and drug target for autism

Improving our understanding of what causes autism spectrum disorder (ASD) can not only lead to better drugs to treat it, but more precise methods of diagnosis. Though progress has been made, as it stands there are no reliable biomarkers for ASD, with previous research implicating hundreds of genes in the condition which has muddied the waters somewhat. But now a team of scientists has zeroed in on defects in a particular signaling pathway that may be responsible for cognitive impairments associated with the condition.Read More

Medical

Paralyzed man uses own brainwaves to walk again – no exoskeleton required

A man suffering complete paralysis in both legs has regained the ability to walk again using electrical signals generated by his own brain. Unlike similar efforts that have seen paralyzed subjects walk again by using their own brainwaves to manually control robotic limbs, the researchers say this is the first time a person with complete paralysis in both legs due to spinal cord injury was able to walk again under their own power and demonstrates the potential for noninvasive therapies to restore control over paralyzed limbs.Read More

Medical

Protein patch restores heart tissue and function after a heart attack

Though sufferers of heart attacks may survive the initial event, they cause permanent damage to the organ in the form of scar tissue, which affects its ability to pump blood. Scientists around the world are working on this problem, with hydrogels, human stem cells and even bioengineered tissue that sticks together like Velcro all offering possible solutions. But the latest promising advance comes from a team of researchers that has developed a simple protein patch that restores animal hearts almost to normal function.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning