Advertisement
more top stories »

University of California


— Science

Lockheed Martin shrinks the telescope

After 400 years, the original telescope design is getting a major upgrade. Part of a DARPA funded project, Lockheed Martin's Segmented Planar Imaging Detector for Electro-optical Reconnaissance (SPIDER) telescope replaces the large primary lenses used in refracting telescopes with an array of tiny ones that allow the instruments to shrink by a factor of 10 to 100.

Read More
— Biology

Mutant mosquitos with glowing red eyes offer eco-friendly malaria control

We've seen genetic engineering used in various ways in an attempt to combat the spread of malaria by mosquitoes, including rendering the insects flightless, altering their sense of smell, making them infertile, and making them unable to spread the disease. Now another approach has been added to the list with scientists at the University of California developing a CRISPR/Cas9 technique that could stop entire mosquito populations from transmitting the malaria parasite to humans.

Read More
— Electronics

Portobella mushrooms improve battery recipe

The number of electric vehicles and mobile devices is expected to surge over the coming decade, which would place considerable strain on our environment and resources as far as battery technology currently stands. In an effort to find more sustainable alternatives for battery materials, researchers from the University of California, Riverside have created a battery incorporating the skins of portabella mushrooms. The move not only has the potential to reduce the economic and environmental cost of battery production, but may also result in batteries whose capacity increases over time.


Read More
— Medical

Scientists uncover potential biomarker and drug target for autism

Improving our understanding of what causes autism spectrum disorder (ASD) can not only lead to better drugs to treat it, but more precise methods of diagnosis. Though progress has been made, as it stands there are no reliable biomarkers for ASD, with previous research implicating hundreds of genes in the condition which has muddied the waters somewhat. But now a team of scientists has zeroed in on defects in a particular signaling pathway that may be responsible for cognitive impairments associated with the condition.

Read More
— Medical

Paralyzed man uses own brainwaves to walk again – no exoskeleton required

A man suffering complete paralysis in both legs has regained the ability to walk again using electrical signals generated by his own brain. Unlike similar efforts that have seen paralyzed subjects walk again by using their own brainwaves to manually control robotic limbs, the researchers say this is the first time a person with complete paralysis in both legs due to spinal cord injury was able to walk again under their own power and demonstrates the potential for noninvasive therapies to restore control over paralyzed limbs.

Read More
— Medical

Protein patch restores heart tissue and function after a heart attack

Though sufferers of heart attacks may survive the initial event, they cause permanent damage to the organ in the form of scar tissue, which affects its ability to pump blood. Scientists around the world are working on this problem, with hydrogels, human stem cells and even bioengineered tissue that sticks together like Velcro all offering possible solutions. But the latest promising advance comes from a team of researchers that has developed a simple protein patch that restores animal hearts almost to normal function.

Read More
— Environment

Artificial photosynthesis breakthrough turns CO2 emissions into plastics and biofuel

Scientists at the Lawrence Berkeley National Laboratory and the University of California, Berkeley have created a hybrid system of bacteria and semiconducting nanowires that mimics photosynthesis. According to the researchers, their versatile, high-yield system can take water, sunlight and carbon dioxide and turn them into the building blocks of biodegradable plastics, pharmaceutical drugs and even biofuel. Read More
— Electronics

Graphene device makes ultrafast light to energy conversion possible

Converting light to electricity is one of the pillars of modern electronics, with the process essential for the operation of everything from solar cells and TV remote control receivers through to laser communications and astronomical telescopes. These devices rely on the swift and effective operation of this technology, especially in scientific equipment, to ensure the most efficient conversion rates possible. In this vein, researchers from the Institute of Photonic Sciences (Institut de Ciències Fotòniques/ICFO) in Barcelona have demonstrated a graphene-based photodetector they claim converts light into electricity in less than 50 quadrillionths of a second. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement