Introducing the Gizmag Store

Tufts University

Protein from silkworm cocoons has been used to create strong yet biodegradable bone fixati...

Silk is an amazingly strong material, yet it also harmlessly biodegrades when left in the body. This has led to its use in experimental brain implants, heart patches, and even bio-electronics. According to a new study conducted by scientists at Tufts University School of Engineering and Beth Israel Deaconess Medical Center, it may now also find use in the production of better plates and screws used for securing broken bones.  Read More

The Uji shower head starts out green, and gradually changes to red

There are few things that most of us like better than a long, hot shower, but they sure use up a lot of water and power. That’s why Tufts University grads Brett Andler, Sam Woolf and Tyler Wilson have created the Uji illuminated shower head. It gradually changes from green to red while in use, letting users know when it’s time to get out.  Read More

The bioskiving process (Image credit: Qiaobing Xu)

Collagen is the main component of connective tissues and the most abundant protein in the human body. Biocompatible and biodegradable, it is an excellent material for making scaffolding for tissue engineering. The trouble is, conventional techniques disrupt the fibrous structure of collagen and weaken the end product. Tufts University researchers are aiming to change this with a new technique for fabricating collagen structures that avoids disruption and retains collagen’s strength.  Read More

A biodegradable integrated circuit during dissolution in water (Photo: Beckman Institute, ...

We’ve certainly been hearing a lot lately about tiny electronic devices that can do things such as delivering medication after being implanted in the body, measuring structural stress upon being attached to a bridge, or monitoring pollution after being placed in the environment. In all of these cases, the device has to be retrieved once it’s served its purpose, or just left in place indefinitely. Now, however, an interdisciplinary team of researchers have demonstrated “transient electronics,” which dissolve into nothing after a pre-determined amount of time.  Read More

Brainput provides a passive, implicit input channel to interactive systems, with little ef...

As machines get more and more sophisticated, the mental capacity of their human overlords stays at a static (albeit seemingly impressive) level, and therefore slowly starts to pale in comparison. The bandwidth of the human brain is not limitless, and if an overloaded brain happens to be overseeing machines carrying out potentially dangerous tasks, you can expect trouble. But why had we built the machines in the first place, if not to save us from trouble? Brainput, a brain-computer interface built by researchers from MIT and Tufts University, is going to let your computer know if you’re mentally fit for the job at hand. If it decides your brain is overloaded with tasks, it will help you out by handling some of them for you.  Read More

Scientists have created microneedles made from silk, which are said to offer several advan...

Microneedles continue to show promise as a replacement – in at least some applications – for the hypodermic needle. Typically, a sheet containing an array of the tiny needles is adhered to the patient’s skin, like a bandage. The microneedles painlessly pierce the top layer of skin, then gradually deliver the medication within them by harmlessly dissolving into the patient’s bloodstream. As an added bonus, once everything is complete, there are no bio-hazardous used needles to dispose of. Now, bioengineers from Massachusetts’ Tufts University have developed what they claim is an even better type of microneedle, which is made from silk.  Read More

The molecular motor (yellow dot with black arms) sits on a copper surface (orange) and is ...

Remember back in the old days, when nano-scale motors were a clunky 500 nanometers across? That record was subsequently broken with a 200-nanometer model, but has now been broken again, by a motor that’s just one nanometer wide. By comparison, the width of a human hair is about 60,000 nanometers. The new motor, created by scientists at Tufts University in Massachusetts, is reportedly the first one ever to consist of a single molecule.  Read More

Scientists are experimenting with using genetically engineered spider silk proteins in the...

Spider silk is pretty amazing stuff. Pound for pound, it has a tensile strength close to that of steel while being one-fifth as dense, it’s tougher than Kevlar, and it can stretch to almost one-and-a-half times its length without breaking. As if that wasn’t enough, it now appears that a genetically engineered version of the substance could be used for delivering genes into human cells.  Read More

Caterpillars have inspired a soft-bodied robot that can move fast as well as wriggle into ...

The millions of years of natural selection that lies behind the immense biodiversity found on our planet is fertile ground for keeping robotics research rolling ... in this case, literally. Some caterpillars in the Crambidae family have the amazing ability to spring into a wheel shape and roll away when it's time to get out of Dodge fast, and it is this talent that has inspired the creation of GoQBot – a 3-inch cm long soft-bodied robot that could provide a blueprint for versatile search and rescue robots of the future.  Read More

An unregenerated tail on an untreated tadpole (top), and a regenerated tail on one that re...

In a study that could have implications for the treatment of traumatic injuries in humans, scientists at Tufts University in Massachusetts have succeeded in getting tadpoles to regrow amputated tails. The researchers first noted that when the tails were cut off of young Xenopus laevis (African clawed frog) tadpoles, a localized increase in sodium ions occurred at the amputation site, which allowed the tail to regenerate – something which tadpoles lose the ability to do as they mature. However, after an hour of treatment with a drug cocktail that triggered an influx of sodium ions into injured cells, older tadpoles were also able to regenerate their tails. Given that tadpole tails contain spinal cord, muscle, nerves and other materials, it’s possible that the process might someday be able to regenerate the spinal cords, or even limbs, of people.  Read More

Looking for something? Search our 26,499 articles