Advertisement

Transistor

Electronics

New graphene transistor created with record high-switching performance

Graphene has already brought us the world’s smallest transistor, a triple-mode, single transistor amplifier and a supercapacitor that can store as much energy as a battery while recharging in seconds. And these are sure to just be the tip of the iceberg. The latest breakthrough from the wonderful world of graphene is a new graphene field effect transistor (GFET) that boasts a record high-switching performance. The device promises improved performance for future electronic devices and means graphene could potentially replace silicon, or at least be used side by side with silicon, in electronic devices. Read More
Electronics

Molybdenite outshines silicon and graphene for electronic applications

Researchers have uncovered a material that they say has distinct advantages over traditional silicon and even graphene for use in electronics. Called molybdenite (MoS2), this mineral is abundant in nature and is commonly used as an element in steel alloys or, thanks to its similarity in appearance and feel to graphite, as an additive in lubricant. But the mineral hadn’t been studied for use in electronics, which appears to have been an oversight with new research showing that molybdenite is a very effective semiconductor that could enable smaller and more energy efficient transistors, computer chips and solar cells.Read More

Electronics

All-optical transistor created

Researchers from Germany’s Max Planck Institute of Quantum Optics (MPQ) and the Swiss Ecole Polytechnique Federale de Lausanne (EPFL) have created a microresonator that produces vibrations from laser light. The device also uses one laser beam to control the intensity of another, thus making it essentially an optical transistor. The technology could have big implications in fields such as telecommunications. Read More

Electronics

Revolutionary diode design cracks 50 year-old electronics speed barrier

Metal-insulator-metal (MIM) diodes might just be the technology that allows electronics achieve the next big leap in processing speed. Research into diode design conducted at the Oregon State University (OSU) has revealed this week cheaper and easier to manufacture MIM diodes that will also eliminate speed restrictions of electronic circuits that have baffled materials researchers since the 1960's.Read More

Electronics

New graphene-based single-transistor amplifiers are a triple threat

Graphene has already brought us the world’s smallest transistortwice – and now the one atom thick form of carbon that recently won its discoverers the Nobel Prize has been used to create a triple-mode, single-transistor amplifier. The new transistor has the potential to replace many traditional transistors in a typical integrated circuit and its developers say the device could become a key component in future electronic circuits.Read More
Science

Silicon computer chips successfully implanted in living human cells

Scientists have begun integrating electronics into biology, but don't bolt your doors in fear of cyborgs and hybrid human-robots yet! Researchers from the Instituto de Microelectrónica de Barcelona IMB-CNM (CSIC), have found a way to implant minute silicon chips into living cells and use them as intracellular sensors. This bio-nanotechnological advancement could tell us a lot about how our cells are working at a nano level, and have widespread implications for early detection of diseases, and new cellular repair mechanisms. Read More

Science

Toshiba's spintronics transistor and a new storage mechanism in silicon come to life

In a recent issue of the journal Nature, researchers from the University of Twente, Netherlands, explain how they succeeded in transferring magnetically coded information directly into a semiconductor, for the first time at room temperatures. Meanwhile, Toshiba announced at the International Electronics Devices Meeting (IEDM) it has developed a MOSFET transistor harnessing spintronics, demonstrating stable, fast and low-power performance.Read More

Science

Single-atom transistor promises new quantum computing breakthroughs

As far as transistor size is concerned, it doesn't get any smaller than this. An international group of researchers from the Helsinki University of Technology, the University of New South Wales and the University of Melbourne have successfully built a fully working transistor that is just one atom in size, smashing previous records and, more importantly, creating a very unique venue to study phenomena to be exploited in the rapidly developing field of quantum computing.Read More

    Advertisement
    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement