Introducing the Gizmag Store

Solar Cell

Konarka's flexible and lightweight Power Plastic

While they offer much lower efficiencies than inorganic photovoltaic cells, organic solar cells are cheaper to produce and are lightweight and flexible. This makes them suitable for a wider range of applications than rigid solar cells, including clothing and bags. Konarka has been producing its organic based photovoltaic (OPV) solar cells under the name of Power Plastic for a number of years now and the National Energy Renewable Laboratory (NREL) has just announced that Konarka’s latest organic based photovoltaic (OPV) solar cells have demonstrated a record breaking 8.3 percent efficiency.  Read More

Researchers have created a process to produce a light-absorbing layer on textured substrat...

The idea of boosting the performance of solar cells by coating them with a textured substrate is commonly used in silicon-based cells. The idea is to traps more light so that it bounces around inside the cell instead of reflecting back out, but for a number of reasons, attempts to use textured substrates in polymer solar cells have failed. Now researchers from Iowa State University and the Ames Laboratory have developed a process of producing a thin and uniform light-absorbing layer on textured substrates that improves the efficiency of polymer solar cells by 20 percent.  Read More

Possible model of the Sahara Solar Breeder Project

This is ambition with a capital A. Universities in Japan and Algeria have teamed up on a project that aims to solve the world’s energy problems. Called the Sahara Solar Breeder Project, the plan is to build manufacturing plants around the Sahara Desert and extract silica from sand to make solar panels, which will then be used to build solar power plants in the desert. The power generated by the initial plant or plants would be used to “breed” more silicon manufacturing and solar power plants, which will in turn be used to breed more again, and so on. The ultimate goal is to build enough plants to provide 50 percent of the world’s electricity by 2050, which would be delivered via a global superconducting supergrid.  Read More

Boeing subsidiary Spectrolab has announced it will mass-produce a 39.2 percent efficiency ...

When it comes to solar cells, everyone is chasing the highest conversion efficiency. Although we’ve seen conversion efficiencies of over 40 percent achieved with multi-junction solar cells in lab environments, Boeing subsidiary Spectrolab is bringing this kind of efficiency to mass production with the announcement of its C3MJ+ solar cells which boast an average conversion efficiency of 39.2 percent.  Read More

Chemist Ali Javey, who led development of the tapered nanopillars (Photo: Berkeley Lab)

Solar cells could become more efficient and less expensive, thanks to the development of tapered nanopillar semiconductors that are narrow at the top and wide at the bottom. Created by chemist Ali Javey and his group from California’s Lawrence Berkeley National Laboratory, the two-micron-high nanopillars’ unique shape allows them to collect as much or more light than conventional semiconductors, while using much less material.  Read More

An organic single-crystal transistor made out of rubrene (red crystal) (Image: Rutgers Uni...

Silicon-based solar cells, by far the most prevalent type of solar cell available today, might provide clean, green energy but they are bulky, rigid and expensive to produce. Organic (carbon-based) semiconductors are seen as a promising way to enable flexible, lightweight solar cells that would also be much cheaper to produce as they could be “printed” in large plastic sheets at room temperature. New research from physicists at Rutgers University has strengthened hopes that solar cells based on organic semiconductors may one day overtake silicon solar cells in cost and performance, thereby increasing the practicality of solar-generated electricity as an alternative energy source to fossil fuels.  Read More

Schematic diagram of a thin film organic solar cell shows the top layer, a patterned, roug...

Research has already shown that at the nanoscale, chemistry is different and the same is apparently true for light, which Engineers at Stanford University say behaves differently at scales of around a nanometer. By creating solar cells thinner than the wavelengths of light the engineers say it is possible to trap the photons inside the solar cell for longer, increasing the chance they can get absorbed, thereby increasing the efficiency of the solar cell. In this way, they calculate that by properly configuring the thicknesses of several thin layers of films, an organic polymer thin film could absorb as much as 10 times more energy from sunlight than predicted by conventional theory.  Read More

Postdoctoral associate Jae-Hee Han, left, graduate student Geraldine Paulus and associate ...

The size and efficiency of current photovoltaic (PV) cells means most people would probably have to cover large areas of their rooftops with such cells to even come close to meeting all their electricity needs. Using carbon nanotubes, MIT chemical engineers have now found a way to concentrate solar energy 100 times more than a regular PV cell. Such nanotubes could form antennas that capture and focus light energy, potentially allowing much smaller and more powerful solar arrays.  Read More

Associate Professor Michael Strano (left) with graduate student Ardemis Boghossian and pos...

One of the problems with harvesting sunlight and converting it into stored energy is that the sun’s rays can be highly destructive to many materials, leading to a gradual degradation of many systems developed to do just that. Once again, researchers have turned to nature for a solution. Plants constantly break down their light-capturing molecules and reassemble them from scratch, so the basic structures that capture the sun’s energy are, in effect, always brand new. By imitating this strategy MIT scientists have created a novel set of self-assembling molecules and used them to create a photovoltaic cell that repairs itself.  Read More

EnSol's film being applied inside a deposition chamber

Imagine if all the windows of a building, and perhaps even all its exterior walls, could be put to use as solar collectors. Soon, you may not have to imagine it, as the Norweigan solar power company EnSol has patented a thin film solar cell technology designed to be sprayed on to just such surfaces. Unlike traditional silicon-based solar cells, the film is composed of metal nanoparticles embedded in a transparent composite matrix, and operates on a different principle. EnSol is now developing the product with help from the University of Leicester’s Department of Physics and Astronomy.  Read More

Looking for something? Search our 26,562 articles