Advertisement

Solar Cell

Energy

Flower power: Transparent rose-petal skin enhances solar cells

We humans tend to pat ourselves on the back when we make strides in converting the sun's light into energy through solar technology, but plants have been doing much the same thing on Earth for thousands of years. Realizing this, a team of scientists lifted an imprint off rose petals and created a film that significantly boosted the efficiency of solar cells.Read More

Materials

Conductive thin film clears the way for improved solar cells

Researchers at the University of Korea and the University of Illinois at Chicago have developed a new thin film material that packs a unique combination of features: it's highly electrically conductive, bendable, stretchable, and almost entirely transparent. The film could help build more efficient solar panels, self-heating smart windows, flexible displays, and high-performance cooling surfaces.Read More

Environment

New world record set for converting sunlight to electricity

An Australian team has set a new record for squeezing as much electricity as possible out of direct, unfocused sunlight via a new solar cell configuration. Engineers at the University of New South Wales (UNSW) achieved 34.5 percent sunlight-to-electricity conversion efficiency, a new mark that also comes closer than ever to the theoretical limits of such a system.Read More

Materials

Material that recycles sunlight could be next big leap for solar cells

If the rest of us have to recycle things like our milk cartons, junk mail and beer bottles, shouldn't solar cells have to abide by the same rules? That's part of the thinking in new research that's just come out of the University of Cambridge. Researchers there have discovered that a certain material can actually recycle photons from light, which could lead to solar cells that are orders of magnitude more efficient than anything currently in use.Read More

Electronics

Thinnest, lightest, solar cells ever created outperform their bulky glass brethren

Using gossamer-like layers of flexible polymers, researchers at MIT have created the thinnest and lightest solar cells ever made. Just one-fiftieth the thickness of a human hair, and capable of producing up to 6 watts of power per gram, these cells are so thin and light that they can be supported on the surface of a soap bubble without breaking it. With such impressive credentials, the prototype cells have the potential to add solar power to everything from paper-based electronics through to all manner of mobile devices and exceptionally lightweight wearables. Read More

Materials

Chance discovery puts graphene electronics closer to mass production

We've heard plenty on the wonderful properties of graphene, but the supermaterial par excellence still hasn't found its way to commercial products because it is too delicate for real-world conditions. Now, in a lucky and perhaps game-changing discovery, scientists at the Brookhaven National Laboratory (BNL) have found that placing graphene on top of common industrial-grade glass is a cheap and effective way of making it resilient and tunable, paving the way for the production of graphene-based electronics on a large scale.Read More

Environment

Heliatek claims new conversion efficiency record for organic PV cells

German solar technology firm Heliatek claims to have outdone itself by setting a new world record for directly converting sunlight into electricity using organic photovoltaic cells. In 2012 it claimed a then world record 10.7 percent conversion efficiency and said it was gunning for 15 percent in the near future. This week it announced it's halfway there, achieving a new record of 13.2 percent.

Read More
Environment

Cheaper, longer-lasting perovskite solar cells could be on the way

Perovskite solar cells are one of the most exciting green energy technologies to emerge in recent years, combining low cost with high energy conversion rates. Now, researchers at the Swiss Federal Institute of Technology in Lausanne (EPFL) have found a way to cut their cost even further by developing a charge-carrying material that is much cheaper, highly efficient, and could even help address the technology's current major weakness by significantly lengthening the lifespan of the panels.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning