Introducing the Gizmag Store

Silicon

Twin Creeks Technologies' Hyperion process is claimed to be able to produce crystalline si...

Boosting solar cell efficiency is seen as a key factor in making them more practical, but there is another way of looking at the matter ... if the price of those cells were lowered, we could generate more power simply by using more of them. That’s where Mississippi-based Twin Creeks Technologies comes into the picture. The company has developed a method of making crystalline silicon wafers which it says could reduce the cost of solar cell production by half.  Read More

Molybdenite could be used to make smaller and more energy efficient transistors

Researchers have uncovered a material that they say has distinct advantages over traditional silicon and even graphene for use in electronics. Called molybdenite (MoS2), this mineral is abundant in nature and is commonly used as an element in steel alloys or, thanks to its similarity in appearance and feel to graphite, as an additive in lubricant. But the mineral hadn’t been studied for use in electronics, which appears to have been an oversight with new research showing that molybdenite is a very effective semiconductor that could enable smaller and more energy efficient transistors, computer chips and solar cells.  Read More

Possible model of the Sahara Solar Breeder Project

This is ambition with a capital A. Universities in Japan and Algeria have teamed up on a project that aims to solve the world’s energy problems. Called the Sahara Solar Breeder Project, the plan is to build manufacturing plants around the Sahara Desert and extract silica from sand to make solar panels, which will then be used to build solar power plants in the desert. The power generated by the initial plant or plants would be used to “breed” more silicon manufacturing and solar power plants, which will in turn be used to breed more again, and so on. The ultimate goal is to build enough plants to provide 50 percent of the world’s electricity by 2050, which would be delivered via a global superconducting supergrid.  Read More

Last year we reported on a breakthrough by researchers at Rice University that brought graphite’s potential as a mass data storage medium a step closer to reality and created the potential for reprogrammable gate arrays that could bring about a revolution in integrated circuit design and extend the limits of miniaturization subject to Moore’s Law. The researchers showed how electrical current could repeatedly break and reconnect 10-nanometer strips of graphite to create a robust reliable memory “bit”. At the time, they didn’t fully understand why it worked so well. Well, a year is a long time in science and now they do.  Read More

A chip is heated and cooled (left), made from silicon (right) supersaturated with copper, ...

You might think it was a simple law of physics that most solids melt as they get hotter, and harden as they get colder. A few materials, however, do just the opposite – they melt as they cool. Researchers at the Massachusetts Institute of Technology (MIT) have recently discovered that by dissolving certain metals into silicon, they can add that silicon compound to the relatively short list of exotic substances that exhibit retrograde melting. Their accomplishment could ultimately result in less expensive solar cells and electronic devices.  Read More

Intel engineer, Dr. Mario Paniccia, holds the thin optical fiber used to carry data from o...

Today’s computer components are connected to each other using copper cables or traces on circuit boards. Due to the signal degradation that comes with using metals such as copper to transmit data, these cables have a limited maximum length. This limits the design of computers, forcing processors, memory and other components to be placed just inches from each other. Intel has announced an important breakthrough that could see light beams replace the use of electrons to carry data in and around computers, enabling data to move over much longer distances and at speeds many times faster than today’s copper technology.  Read More

A high-energy laser pulse (red) can modify the state of a phosphorus electron (yellow) wit...

An international team of researchers from the University of Surrey, UCL, Heriot-Watt University and the FOM Institute for Plasma Physics have used infra-red laser to obtain precise control of the quantum superpositions of an electron in silicon for the first time . This feat marks yet another leap toward the dream of an affordable, fast and reliable quantum computer.  Read More

Researchers at Boston College have developed a high efficiency nanoscale thin solar cell b...

Traditionally, the goal of high power conversion efficiency in thin film solar cells has been compromised by opposing optical and electrical constraints – while a cell needs to be thick enough to absorb adequate amounts of light, it must also be thin enough for the extraction of current. Rising to this “thick and thin” challenge, researchers at Boston College have designed a nanoscale solar cell based on the age-old technology that created the coaxial cable, promising a higher conversion efficiency than any thin film solar cell yet seen.  Read More

An example of one of the solar cells made from silicon ink that achieved the record-breaki...

California-based manufacturer of low-cost solar materials, Innovalight, has achieved record of 19 percent conversion efficiency for its silicon ink-based solar cells.  Read More

The flexible silicon technology used to create a new type of implantable device (Image: Da...

Sure, LED tattoos might look cool, but now scientists have found an even better use for flexible silicon technology. In what represents the first use of such technology for a medical application a team of cardiologists, materials scientists, and bioengineers has created and tested a new type of implantable device for measuring the heart’s electrical output that the team says is a vast improvement over current devices and could also mark the beginning of a new wave of surgical electronics.  Read More

Looking for something? Search our 26,500 articles