Advertisement

Silicon

Environment

Using 'dirty silicon' to cut the cost of solar cells

Most everyone not vested in oil and gas agrees that renewable energies such as solar are a more sustainable option, but cost remains an issue. To make solar more competitive by addressing the high cost of solar cell production, researchers out of Norway have developed a method that could bring down the amount of silicon used per unit area by as much as 90 percent. The price of silicon is a major driver in the cost of solar panels. Read More

Quantum Computing

New records bring super-powerful quantum computers closer to reality

In what are claimed to be new world records, two teams working in parallel at the University of New South Wales (UNSW) in Australia have each found solutions to problems facing the advancement of silicon quantum computers. The first involves processing quantum data with an accuracy above 99 percent, while the second is the ability to store coherent quantum information for more than thirty seconds. Both of these records represent milestones in the eventual realization of super-powerful quantum computers.Read More

Electronics

Sand-based anode triples lithium-ion battery performance

Conventional lithium-ion batteries rely on anodes made of graphite, but it is widely believed that the performance of this material has reached its zenith, prompting researchers to look at possible replacements. Much of the focus has been on nanoscale silicon, but it remains difficult to produce in large quantities and usually degrades quickly. Researchers at the University of California, Riverside have overcome these problems by developing a lithium-ion battery anode using sand.Read More

Electronics

New li-ion battery anode could charge electronics in minutes

Researchers at the University of California, Riverside have developed a silicon anode that would allow us to charge lithium-ion batteries up to 16 times faster than is currently possible. The new design relies on a three-dimensional, cone-shaped cluster of carbon nanotubes that could also result in batteries that hold about 60 percent more charge while being 40 percent lighter. Read More

Mobile Technology

Tinitell straps a mobile phone on kids' wrists

Children need to be allowed to play outside from time to time, but some parents are often too concerned for the safety of their little ones to loosen the reins. Having kids wear a miniature mobile phone on their wrist so they can be contacted at any time may help ease those worries, which is where Tinitell could prove invaluable to nervous parents.Read More

Electronics

Pomegranate-inspired electrode could mean longer lithium-ion battery life

Though the use of silicon in lithium-ion batteries promises a whole new world of energy storage, it also poses several problems to a battery's durability and overall performance. A new electrode design inspired by clusters of pomegranate seeds and developed by researchers at the Department of Energy's National Accelerator Laboratory (SLAC) and Stanford University, overcomes some of these obstacles, bringing lighter and more powerful batteries closer to reality. Read More

Science

Black silicon slices and dices bacteria

Originally discovered by accident in the 1980s, black silicon is silicon with a surface that has been modified to feature nanoscale spike structures which give the material very low reflectivity. Researchers have now found that these spikes can also destroy a wide range of bacteria, potentially paving the way for a new generation of antibacterial surfaces.Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning