Introducing the Gizmag Store

Semiconductors

Instead of the usual carbon atoms, artificial graphene is made from crystals of traditiona...

Graphene is truly a 21st-century wonder material, finding use in everything from solar cells to batteries to tiny antennas. Now, however, a group of European research institutes have joined forces to create a graphene knock-off, that could prove to be even more versatile.  Read More

A silicon circuit coated with a protective layer and immersed in fluid that mimics human b...

If physicians have a sufficiently-early warning that a patient’s body is rejecting a transplanted organ, then there’s a good chance that they can stop the process via medication. Implanted electronic sensors could serve to provide that warning as early as possible, and thanks to new research, they’re coming a step closer to practical use.  Read More

A chunk of germanium in its natural form (Photo: Gibe)

It consists of one-atom-thick sheets and it could revolutionize electronics ... but it’s not graphene. Chemists at Ohio State University, instead of creating graphene from carbon atoms, have used sheets of germanium atoms to create a substance known as germanane. Because of its numerous advantages over silicon, it could become the material of choice for semiconductors.  Read More

Professor Xiong Qihua and his team used a laser to cool the compound Cadmium Sulfide (Phot...

A research team at Singapore’s Nanyang Technological University (NTU) has successfully used a laser to cool down a semiconductor material known as Cadmium Sulfide. The results of the recently published study could lead to the development of self-cooling computer chips and smaller, more energy efficient air conditioners and refrigerators that don't produce greenhouse gases.  Read More

A rendering of the gallium/arsenic nanowires on the graphene substrate

Ordinarily, electronics are made with silicon semiconductors that are rigid, opaque, and about half a millimeter thick. Thanks to research being carried out at the Norwegian University of Science and Technology, however, that may be about to change. Led by Dr. Helge Weman and Prof. Bjørn-Ove Fimland, a team there has developed a method of making semiconductors out of graphene. At a thickness of just one micrometer, they are flexible and transparent. Also, because they require so little raw material, they should be considerably cheaper to manufacture than their silicon counterparts.  Read More

A new technique allows photovoltaic solar cells to be produced using any semiconductor (Ph...

Despite their ability to generate clean, green electricity, solar panels aren't as commonplace as the could be. The main sticking point, of course, is price. Due to their need for relatively expensive semiconductor materials, conventional solar cells don't yet have a price-efficiency combination that can compete with other sources of electricity. Now Profs. Alex Zettl and Feng Wang of Lawrence Berkeley National Laboratory and the University of California at Berkeley have developed seriously unconventional solar cell technology that allows virtually any semiconductor material to be used to create photovoltaic cells.  Read More

Qubits are fickle things, having a tendency to lose superposition under observation - reca...

A significant step on the path to quantum computing has been taken by an international team of researchers applying a 22-year old theory. They have succeeded in creating quantum bits within a semiconductor for the very first time.  Read More

The world's first molybdenite microchip has been successfully tested in Switzerland.

Back in February, Darren Quick wrote about the unique properties of Molybdenite and how this material, previously used mostly as a lubricant, could actually outshine silicon in the construction of transistors and other electronic circuits. In brief: it's much more energy efficient than silicon, and you can slice it into strips just three atoms thick - meaning that you can make transistors as much as three times smaller than before, and make them flexible to boot. Well, the technology has now been proven with the successful testing of the world's first molybdenite microchip in Switzerland. Does this mean Lausanne will become known as "Molybdenite Valley?"  Read More

Molybdenite could be used to make smaller and more energy efficient transistors

Researchers have uncovered a material that they say has distinct advantages over traditional silicon and even graphene for use in electronics. Called molybdenite (MoS2), this mineral is abundant in nature and is commonly used as an element in steel alloys or, thanks to its similarity in appearance and feel to graphite, as an additive in lubricant. But the mineral hadn’t been studied for use in electronics, which appears to have been an oversight with new research showing that molybdenite is a very effective semiconductor that could enable smaller and more energy efficient transistors, computer chips and solar cells.  Read More

Berkeley researchers Kin Man Yu and Wladek Walukiewicz (Photo: Berkeley Lab)

Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory have come a step closer to the development of a commercially-viable full-spectrum solar cell. Traditionally, due to their limited band gap (energy range), semiconductors used in solar cells have only been able to respond to a certain segment of the solar spectrum – this segment varies, according to the semiconductor. Some cells have been created that respond to everything from low-energy infrared through visible light to high-energy ultraviolet, but these have been costly to produce and thus unfit for common use. The new cell, however, responds to almost the entire spectrum, and can be made using one of the semiconductor industry’s most common manufacturing processes.  Read More

Looking for something? Search our 26,500 articles