more top stories »


— Science

Metal foams could provide lightweight radiation shielding

Radiation generally comes under the heading of "things you want to stay away from," so it's no surprise that radiation shielding is a high priority in many industries. However, current shielding is bulky and heavy, so a North Carolina State University team is developing a new lightweight shielding based on foam metals that can block X-rays, gamma rays, and neutron radiation, as well as withstanding high-energy impact collisions.

Read More
— Robotics

Artificial muscle set for a stretch in space

When the Dragon spacecraft is propelled into space atop a Falcon 9 rocket this week on a resupply mission to the International Space Station (ISS), it will be carrying an artificial muscle material developed by Lenore Rasmussen and her company RasLabs. In addition to better prosthetic devices, it is hoped the material could find applications in robots on deep space missions. Read More
— Space

MIT scientists analyze harmful electron-producing solar shockwave

Back in October 2013, two NASA probes were in the perfect position to observe a solar wave as it hit Earth’s magnetic field, gathering data on the event. That data has now been analyzed by teams of scientists at MIT’s Haystack Observatory and the University of Colorado, revealing the process by which harmful, high-speed particles are generated in Earth’s radiation belts. Read More
— Medical

Implantable device targets tumors using electric fields

Further to a list of side effects ranging from mildly unpleasant to just plain awful, the scattergun nature of chemotherapy often sees healthy tissue damaged along with the cancerous cells. Attacking these cancer cells with better precision would lead to more effective treatments and reduce harmful side effects, and has been a primary objective for researchers. Among this group is a team of scientists that has developed a way of administering cancer-fighting chemicals using an electric field that is claimed to enable a highly-targeted form of treatment. Read More
— Medical

New approach could lead cancer cells down path of destruction

Scientists from Case Western Reserve University's School of Medicine have discovered a potential treatment that may steer cancer cells toward their own destruction. The study focused on a particular gene that was found to influence levels of a tumor-fighting protein called 53BP1, the heightened presence of which makes cancer cells more vulnerable to existing forms of treatment. Read More
— 3D Printing

3D-printed tumor replicas to better measure doses of cancer-fighting drugs

Administering the correct dosages to fight cancerous tumors can be a difficult balancing act. Too much of the radioactive drugs can cause harm to healthy tissue, but not enough will see the cancer cells survive and continue to spread. But a new technique developed at The Institute of Cancer Research in London may afford doctors an unprecedented level of accuracy in performing radiotherapy, using 3D-printed replicas of a patient’s organs and tumors to better determine how much radiation a tumor has received. Read More
— Space

NASA study examines the effects of microgravity on the immune system

A new study by NASA intends to examine the detrimental effects of microgravity on the immune system, by studying the blood of rats and blue mussels over the course of a prolonged stay aboard the International Space Station (ISS). The experiments, TripleLux A & TripleLux B, will be transported to the station by consecutive SpaceX commercial resupply missions. It is hoped that the results of the study could potentially inform future treatment options for immune system deficiencies both in space and on Earth. Read More
— Space

Plastic phantom shows space travel may be safer than thought

A European Space Agency experiment aboard the International Space Station suggests that space travelers may have less to worry about when it comes to radiation ... thanks to a phantom. Called the Matroshka, the "phantom" is a plastic mannequin that is the key component of the first comprehensive study of the effects of radiation on astronauts on long-term space missions that indicates that the hazard may not be as severe as previously thought. Read More