Advertisement
more top stories »

Quantum Information

— Science

New dimensions of quantum information added through hyperentanglement

By - July 1, 2015 1 Picture

In quantum cryptography, encoding entangled photons with particular spin states is a technique that ensures data transmitted over fiber networks arrives at its destination without being intercepted or changed. However, as each entangled pair is usually only capable of being encoded with one state (generally the direction of its polarization), the amount of data carried is limited to just one quantum bit per photon. To address this limitation, researchers have now devised a way to "hyperentangle" photons that they say can increase the amount of data carried by a photon pair by as much as 32 times.

Read More
— Science

Scientists create prototype quantum hard drive

By - January 12, 2015 2 Pictures
Researchers from the Australian National University (ANU) and the University of Otago in New Zealand have created a prototype quantum hard drive that may fundamentally alter the realm of secure, long-distance data encryption. Using atoms of the rare-earth element europium embedded in yttrium orthosilicate (YSO) crystals, the scientists have shattered previous records for quantum information retention by creating a storage device capable of holding quantum state information for up to six hours at a time. Read More
— Science

Quantum memory storage to help quantum communications go the distance

By - November 30, 2014 1 Picture
The technologies made possible by breakthroughs in quantum physics have already provided the means of quantum cryptography, and are gradually paving the way toward powerful, practical, everyday quantum computers, and even quantum teleportation. Unfortunately, without corresponding atomic memories to appropriately store quantum-specific information, the myriad possibilities of these technologies are becoming increasingly difficult to advance. To help address this problem, scientists from the University of Warsaw (FUW) claim to have developed an atomic memory that has both exceptional memory properties and a construction elegant in its simplicity. Read More
— Science

New records bring super-powerful quantum computers closer to reality

By - October 13, 2014 3 Pictures
In what are claimed to be new world records, two teams working in parallel at the University of New South Wales (UNSW) in Australia have each found solutions to problems facing the advancement of silicon quantum computers. The first involves processing quantum data with an accuracy above 99 percent, while the second is the ability to store coherent quantum information for more than thirty seconds. Both of these records represent milestones in the eventual realization of super-powerful quantum computers. Read More
— Science

Researchers achieve long-distance light to matter quantum teleportation

By - September 22, 2014 1 Picture
A successful test in passing information from light into matter – using the teleportation of the quantum state of a photon via optical fiber cable to a receiving crystal located over 25 km (15 mi) away – has been claimed by physicists at the University of Geneva. This test shattered the same team’s previous record and may herald the development of greater, long-distance teleportation techniques and qubit communications and computing capabilities. Read More
— Science

Fermilab experiment will attempt to answer whether we actually live in "the Matrix"

By - August 31, 2014 5 Pictures
In what may be one of the most mind-bogglingly surreal experiments ever floated, scientists at the US Department of Energy's Fermi National Accelerator Laboratory (Fermilab) will attempt to discover if the universe is "real" or merely a holographic 3-D illusion that we just think is real. Using high-powered lasers, the scientists intend to determine if space-time is a quantum system made up of countless tiny bits of information. Read More
— Science

Making teleportation more energy-efficient

By - January 20, 2013 2 Pictures
An international team of researchers has achieved an important theoretical result by finding that quantum teleportation – the process of transporting quantum information at the speed of light, which could in theory be used to teleport macroscopic objects and, one day, even humans – can be achieved in a much more energy-efficient way than was previously thought. Read More
Advertisement

Subscribe to Gizmag's email newsletter

Advertisement