Advertisement
more top stories »

Polymer


— Materials

Hybrid polymer shows promise in self-repairing materials, smart drug delivery, and artificial muscles

We live in an age of plastics, but even after a century of progress, most polymers still come in a single, homogenous form with basic properties. Now a team of researchers at Northwestern University under the leadership of materials scientist Samuel Stupp have developed a hybrid polymer that combines soft and hard areas like bones and muscles in animals. According to the team, this breakthrough in nanoengineering opens the door to applications ranging from self-repairing materials to artificial muscles.

Read More
— Environment

New material created from orange peel cleans up mercury pollution

Since the beginning of the industrial age, mercury pollution has increased steadily in our environment, particularly in rivers and oceans. As a result, high-level predators in our waterways often contain very high levels of mercury, and eating fish containing this neurotoxin can lead to serious health issues. Now Australian scientists working at Flinders University have discovered a simple and efficient way to remove mercury from the environment by using a material made from recycled waste citrus peel.

Read More
— Aircraft

Additive could keep jet fuel from exploding in crashes

Living through an airliner crash involves more than just surviving the initial impact – many people are also killed by the flames and smoke that follow when the jet fuel ignites. Researchers at Caltech, however, are trying to minimize the chances of that second part happening. They've developed an additive that helps reduce the intensity of postimpact fuel fires.

Read More
— Materials

Self-healing bioplastic – just add water

Imagine if things like undersea cables or medical implants could simply heal themselves back together if severed – it would certainly be easier than having to go in and fix them. Well, scientists at Pennsylvania State University are bringing such a possibility closer to reality. They've created a moldable polymer that heals itself when exposed to water – and it's based on squid sucker ring teeth.

Read More
— Mobile Technology

Smartphone microscope lens that costs just pennies to make

Microscopes can be expensive pieces of gear, making access difficult – or non-existent – for students and medical staff in isolated and poorer locales. To help address this, researchers at the University of Houston (UH) have fashioned a lens designed to fit on almost any smartphone. It has the ability to magnify images up to 120 times their original size, and at an estimated production cost of just three cents per lens.

Read More
— Robotics

Artificial muscle set for a stretch in space

When the Dragon spacecraft is propelled into space atop a Falcon 9 rocket this week on a resupply mission to the International Space Station (ISS), it will be carrying an artificial muscle material developed by Lenore Rasmussen and her company RasLabs. In addition to better prosthetic devices, it is hoped the material could find applications in robots on deep space missions. Read More
— Medical

Shape-shifting nanoprobes report on internal body conditions using magnetic fields

Scientists have developed a new type of shape-shifting nanoprobe that can perform high-resolution remote biological sensing not possible with current technology. Around one-tenth the size of a single red blood cell, the nanoprobes are designed to provide accurate feedback on internal body conditions by altering their magnetic fields in response to their environment. The researchers predict wide-spread applications for the nanoprobes in the fields of chemistry, biology, engineering and, one day, to aid physicians in high-accuracy clinical diagnostics. Read More
— 3D Printing

Terminator-inspired tech could give traditional 3D printing a run for its money

A new approach to 3D printing promises to drastically speed up the 3D manufacturing process by "growing" objects out of a pool of resin rather than printing them layer by layer. Carbon3D announced its Continuous Liquid Interface Production technology (CLIP) on stage at the TED conference this week, claiming it can produce commercial-quality objects from a range of polymer-based material at speeds between 25 and 100 times faster than conventional 3D printing. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement