Introducing the Gizmag Store

Piezoelectric

A new discovery by Australian researchers could lead to laptops powered through typing (Ph...

Everlasting batteries and self-powering portable electronics have come one step closer to reality, according to the results of a new research by Australian scientists from Royal Melbourne Institute of Technology (RMIT). The group of researchers successfully measured piezoelectric thin film’s capability to turn mechanical pressure into electricity. It may sound like an idea from the realm of science fiction, but the discovery could eventually lead to laptops powered through typing.  Read More

Orange and GotWind have developed a prototype mobile device charging t-shirt that uses Pie...

Visitors to the UK's best-known music festival are almost guaranteed three things - mud, loud music and a dead mobile device battery. Happily, Orange has increased the number of Chill 'n' Charge tents to help make sure lines of communication stay open and - in what is now becoming as much of a tradition as Glastonbury itself - the company has announced the development of a new green charging technology. Previous projects have included a Power Pump and last year's Orange Power Wellies, and the latest prototype charger is no less impressive. As the name may indicate, the Sound Charge t-shirt turns sound waves into electric charge, allowing the wearer to top up a device battery while thrashing around in the mosh pit.  Read More

The nanodevice consists of a sensor and transmitter (left), a capacitor (middle), and a na...

Scientists from the Georgia Institute of Technology recently reported the development of what they say is the world’s “first self-powered nano-device that can transmit data wirelessly over long distances.” The tiny device is able to operate battery-free, using a piezoelectric nanogenerator to create electricity from naturally-occurring mechanical vibrations.  Read More

Scientists from the Georgia Institute of Technology are claiming to have created the world...

For the past several years, scientists from around the world have been engaged in the development of nanogenerators – tiny piezoelectric devices capable of generating electricity by harnessing minute naturally-occurring movements, such as the shifting of clothing or even the beating of a person's heart. So far, while they may have worked in principle, few if any of the devices have been able to generate enough of a current to make them practical for use in consumer products. Now, however, scientists from the Georgia Institute of Technology are claiming to have created "the world's first practical nanogenerator."  Read More

Tristan Lawry's ultrasonic system is theoretically able to transmit data and power through...

Given the deepwater working conditions endured by submarines, one of the last things most people would want to do is drill holes through their hulls. That’s exactly what is necessary, however, to allow power and data to flow to and from audio and other sensors mounted on the exterior of the vessels. Not only do these holes present a leakage risk, but they also diminish the hull’s structural integrity, and the submarine must be hoisted into drydock in order for any new sensors to be added. Now, a doctoral student at New York’s Rensselaer Polytechnic Institute (RPI) has come up with a method of using ultrasound to transmit power and data wirelessly through a sub’s thick metal hull – no holes required.  Read More

IBM's Next 5 in 5 list predicts 5 technologies that will impact us in the next 5 years

IBM has announced its fifth annual Next Five in Five – a list of five technologies that the company believes “have the potential to change the way people work, live and play over the next five years.” While there are no flying cars or robot servants on the list, there are holographic friends, air-powered batteries, personal environmental sensors, customized commutes and building-heating computers.  Read More

The Windstalk concept would generate electricity from the wind without turbines

Wind turbines are an increasingly popular way to generate clean energy with large-scale wind farms springing up all over the world. However, many residents near proposed wind farm sites have raised concerns over the aesthetics and the low frequency vibrations they claim are generated by wind turbines. An interesting Windstalk concept devised by New York design firm Atelier DNA could overcome both these problems while still allowing a comparable amount of electricity to be generated by the wind.  Read More

The piezoelectric CNF-PZT Cantilever device

Piezoelectric generators that harness otherwise wasted energy from vibrations has been proposed for capturing energy in everything from shoes to roads. Now a new device made out of piezoelectric material by researchers at Louisiana Tech University could allow a wide range of electronic devices to harvest their own wasted operational energy, resulting in devices that are much more energy efficient. It even offers the potential to perpetually power micro and nano devices, such as biomedical devices or remotely located sensors and communication nodes.  Read More

Harnessing sound energy from conversations could one day help recharge mobile phones ((Ima...

In the search for alternative energy sources there's one form of energy you don't hear much about, which is ironic because I'm referring to sound energy. Sound energy is the energy produced by sound vibrations as they travel through a specific medium. Speakers use electricity to generate sound waves and now scientists from Korea have used zinc oxide, the main ingredient of calamine lotion, to do the reverse – convert sound waves into electricity. They hope ultimately the technology could be used to convert ambient noise to power a mobile phone or generate energy for the national grid from rush hour traffic.  Read More

MIT researchers are developing 'functional fibers' that can detect and produce sound (Imag...

We all know of optical fibers, the filaments of glass that carry data in the form of light pulses and enable the high-speed global telecommunications networks we take for granted today. For the past decade, Yoel Fink has been working at MIT to develop fibers with ever more sophisticated properties which enable fabrics to interact with their environment. Fink and his collaborators have now announced a new milestone on the path to functional fibers – fibers that can detect and produce sound.  Read More

Looking for something? Search our 26,496 articles