Using visible light magnified through a compound series of lenses to image small objects, standard optical microscopes have been with us for many centuries. Whilst continually being improved, the result of these many advances of optics and image-capturing techniques means that many high-end optical microscopes have now reached the limit of magnification possible as they push the resolution properties of light itself. In an attempt to resolve this issue, scientists at the University of Buffalo (UB) have created a prototype visible light "hyperlens" that may help image objects once only clearly viewable through electron microscopes.

Read More

Silicon photonics is an emerging technology that incorporates electronic circuits using photons of laser light rather than electrons to transmit, receive, and manipulate information. As such, a silicon photonic CPU could potentially process information at the speed of light – millions of times faster than computers available today. In a step towards this goal, engineers working at the University of Utah have developed an ultra-compact photonic beam-splitter so small that millions of these devices could fit on a single silicon chip.

Read More
By applying 120 year old radio frequency antenna theory to the much newer field of photonics, researchers at Lawrence Berkeley National Laboratory claim to have produced a prototype optical antenna that increases the intensity of emission from a nanorod light source by more than 115 times. This technique may offer the opportunity to replace power-hungry lasers in short-range optical communications devices with enhanced low-power LEDs. Read More
The city of Vienna has hosted a laser light show with a twist with University of Vienna scientists having tested a new way of transmitting data over a light beam. The technique, which exploits classical and quantum mechanics, promises to provide the ability to send much more information through the air much more securely. Read More
A successful test in passing information from light into matter – using the teleportation of the quantum state of a photon via optical fiber cable to a receiving crystal located over 25 km (15 mi) away – has been claimed by physicists at the University of Geneva. This test shattered the same team’s previous record and may herald the development of greater, long-distance teleportation techniques and qubit communications and computing capabilities. Read More
Researchers at Rice University's Laboratory for Nanophotonics (LANP) have developed a new image sensor that mimics the way we see color by integrating light amplifiers and color filters directly onto the pixels. The new design enables smaller, less complex, and more organic designs for CMOS (complementary metal-oxide semiconductor) sensors and other photodetectors used in cameras. Read More
Gorilla Glass could be getting a lot more useful. Corning International, which makes the material commonly used in mobile device screens, has teamed up with researchers at Polytechnique Montreal to create a new type of glass that incorporates transparent sensors. Soon, the glass in your smartphone screen could be used to take your temperature, among many other possibilities. Read More
By exploiting the difference between the speed of two different beams of colored light when traveling through a heated crystalline disk, University of Adelaide researchers claim to have produced the world's most sensitive thermometer – with an accuracy of 30 billionths of a degree. Read More
Artificially replicating the biological process of photosynthesis is a goal being sought on many fronts, and it promises to one day improve light-to-energy efficiencies of solar collection well beyond what's possible with photovoltaic cells. One of the first steps is to imitate the mechanisms at work in the transfer of energy from reception through to output. To this end, Scientists have recently experimented with a combination of biological and photonic quantum mechanical states to form new half-light half-matter particle, called the “polariton.” It could help realize fully synthetic systems by mimicking the energy transport systems of biological photosynthesis. Read More

A team of international researchers has developed artificial crystals with unique optical properties that could lead to advances in quantum computing and telecommunications. Their inspiration? The glorious green wings of the Callophyrs Rubi butterfly. Read More