Because battery technology hasn’t developed as quickly as the electronic devices they power, a greater and greater percentage of the volume of these devices is taken up by the batteries needed to keep them running. Now a team of researchers working at the Center for Integrated Nanotechnologies (CINT) is claiming to have created the world’s smallest battery, and although the tiny battery won’t be powering next year’s mobile phones, it has already provided insights into how batteries work and should enable the development of smaller and more efficient batteries in the future. Read More
Tired of waiting for your computer to boot up? Within five to seven years, you may no longer have to. That’s the estimated amount of time it will take to bring Racetrack Memory to market. Racetrack is a proposed new shock-proof system that is said to be 100,000 times faster than current hard drives, while also being 300 times more energy-efficient. Although it incorporates cutting-edge nanotechnology, it’s based on the same principles as the humble VHS videotape. Read More
It has been estimated that in the European Union, about ten percent of the electricity used in homes and offices goes to power computers and other electronic devices that are in standby mode. By 2020, that amount could constitute 49 terawatt hours per year, which is almost equivalent to the combined annual electrical consumption of Austria, the Czech Republic and Portugal. The European Union’s just-announced Steeper research initiative squarely addresses such concerns. Its aim is to develop electronics that operate on less than half a volt when in standby, and that are up to ten times more energy-efficient when active. Read More
Yi Cui, an Assistant Professor of Material Science and Engineering at Stanford University, has invented quite the water filter. It’s inexpensive, is very resistant to clogging, and uses much less electricity than systems that require the water to be pumped through them. It also kills bacteria, as opposed to just trapping them, which is all that many existing systems do. Read More
Chemists at the National Institute of Standards and Technology (NIST) have stumbled upon a way of producing light from nanowires. While they were refining a method for producing horizontally-grown wires across a substrate, Babak Nikoobakht and Andrew Herzing electrically charged an array of junctions between two materials and caused illumination to occur. The pair hope to further refine the technique so that these nano LEDs can be applied in the development of light sources and detectors useful in photonic devices or lab-on-a-chip platforms. Read More
In the search for alternative energy sources there's one form of energy you don't hear much about, which is ironic because I'm referring to sound energy. Sound energy is the energy produced by sound vibrations as they travel through a specific medium. Speakers use electricity to generate sound waves and now scientists from Korea have used zinc oxide, the main ingredient of calamine lotion, to do the reverse – convert sound waves into electricity. They hope ultimately the technology could be used to convert ambient noise to power a mobile phone or generate energy for the national grid from rush hour traffic. Read More
Using a process described as “a lint roller in reverse,” engineers from the University of California, Berkeley, have created a pressure-sensitive electronic artificial skin from semiconductor nanowires. This “e-skin,” as it’s called, could one day be used to allow robots to perform tasks that require both grip and a delicate touch, or to provide a sense of touch in patients’ prosthetic limbs. Read More
Scientists from the Georgia Institute of Technology have documented a major breakthrough in the production of nanocircuitry on graphene, a material that many envision as the successor of silicon for our electronics needs. Using thermochemical nanolithography (TCNL), the team found that the electrical properties of reduced graphene oxide (rGO) can be easily tuned to reliably produce nanoscale circuits in a single, quick step. Read More
As their name suggests, most existing water purifying filters clean the water by physically trapping or filtering out bacteria. Stanford researchers have now developed a new kind of water purifying filter that isn’t really a filter at all. Instead of trapping bacteria, the new filter actually lets them pass right through. But, by the time they emerge from the filter they have been killed by an electrical field running through it. Not only is the new filter more than 80,000 times faster than existing filters, it is also low-cost, has no moving parts and uses very little power, which should make it particularly attractive for use in the developing world where it is needed most. Read More
It has been a long-standing dream to fabricate superconducting nano-scale wires for faster, more powerful electronics. However, this has turned out to be very difficult if not impossible with conventional superconductors because the minimal size for the sample to be superconducting - known as the coherence length - is large. A group of scientists has now fabricated thin films patterned with large arrays of nanowires and loops that are superconducting when cooled below about 30 kelvin (-243 degrees Celsius). Even more interesting, they found they could change their resistance by applying a magnetic field. Read More