Introducing the Gizmag Store

Nanowires

An artist's impression of an artificial hand covered with the e-skin

Using a process described as “a lint roller in reverse,” engineers from the University of California, Berkeley, have created a pressure-sensitive electronic artificial skin from semiconductor nanowires. This “e-skin,” as it’s called, could one day be used to allow robots to perform tasks that require both grip and a delicate touch, or to provide a sense of touch in patients’ prosthetic limbs.  Read More

Researchers have found that localized heating through a microscope tip can modify the prop...

Scientists from the Georgia Institute of Technology have documented a major breakthrough in the production of nanocircuitry on graphene, a material that many envision as the successor of silicon for our electronics needs. Using thermochemical nanolithography (TCNL), the team found that the electrical properties of reduced graphene oxide (rGO) can be easily tuned to reliably produce nanoscale circuits in a single, quick step.  Read More

SEM image of the silver nanowires in which the cotton is dipped during the process of cons...

As their name suggests, most existing water purifying filters clean the water by physically trapping or filtering out bacteria. Stanford researchers have now developed a new kind of water purifying filter that isn’t really a filter at all. Instead of trapping bacteria, the new filter actually lets them pass right through. But, by the time they emerge from the filter they have been killed by an electrical field running through it. Not only is the new filter more than 80,000 times faster than existing filters, it is also low-cost, has no moving parts and uses very little power, which should make it particularly attractive for use in the developing world where it is needed most.  Read More

Physicist Ivan Bozovic and colleagues have fabricated thin films patterned with large arra...

It has been a long-standing dream to fabricate superconducting nano-scale wires for faster, more powerful electronics. However, this has turned out to be very difficult if not impossible with conventional superconductors because the minimal size for the sample to be superconducting - known as the coherence length - is large. A group of scientists has now fabricated thin films patterned with large arrays of nanowires and loops that are superconducting when cooled below about 30 kelvin (-243 degrees Celsius). Even more interesting, they found they could change their resistance by applying a magnetic field.  Read More

Tiny copper wires can be built in bulk and then 'printed' on a surface to conduct current,...

The latest flat-panel TVs and computer screens produce images by an array of electronic pixels connected by a transparent conductive layer made from indium tin oxide (ITO). ITO is also used as a transparent electrode in thin-film solar cells. But ITO has drawbacks: it is brittle; its production process is inefficient; and it is expensive and becoming more so because of increasing demand. One potential alternative is to use tiny copper nanowires and researchers have now perfected a simple way to make these in quantity. The cheap conductors are small enough to be transparent, making them ideal for thin-film solar cells, flat-screen TVs and computers, and flexible displays.  Read More

The key ingredient in the process is carbon nanotubes — submicroscopic hollow tubes made...

MIT scientists have discovered that a moving pulse of heat traveling along the miniscule wires known as carbon nanotubes can cause powerful waves of energy. These "thermopower waves" can drive electrons along like a collection of flotsam propelled along the surface of ocean waves, creating an electrical current. The previously unknown phenomenon opens up a new area of energy research and could lead to a new way of producing electricity.  Read More

Researcher Bing Hu paints a small square of ordinary paper with an ink that will deposit n...

By dipping an ordinary piece of paper into ink infused with carbon nanotubes and silver nanowires, scientists have been able to create a low-cost battery or supercapacitor that is ultra-lightweight, bendable and very durable. The paper can be crumpled, folded or even soaked in acidic or basic solutions and still will work.  Read More

Researchers are closer to using semiconducting nanowires to create a new generation of sma...

Researchers agree that chip manufacturers will soon reach a hard limit in terms of transistor miniaturization, disproving rule-of-thumb predictions that transistor density roughly doubles every 18 to 24 months. But a collaboration between IBM, Purdue University and the University of California in Los Angeles may have found a way to squeeze more transistor in the same area by building them vertically rather than horizontally.  Read More

Looking for something? Search our 26,559 articles