Introducing the Gizmag Store

Nanowires

One of KAIST's silver nanowire fingerprints

The counterfeiting of high-end products is a growing problem, and has led to the development of countermeasures such as invisible woven patterns, butterfly wing-inspired printing techniques, and even synthetic DNA. One of the drawbacks of some of these approaches, however, is the fact that implementing them can be quite a complex process. Now, a team from the Korea Advanced Institute of Science and Technology (KAIST) has come up with something simpler – tiny jumbles of nanowires that form item-specific "fingerprints."  Read More

A close view of the nanomesh (inset)

We're coming just that much closer to electronic devices such as TV screens that can be rolled up in a tube, or phones that can be folded up and stuffed in a pocket. Scientists at the University of Houston have created a gold nanomesh material that is conductive, transparent and flexible – a combination that they claim has never before been achieved.  Read More

A silver nanowire-based sensor mounted onto a thumb joint to monitor the skin strain assoc...

In 2012, Dr. Yong Zhu and a team at North Carolina State University created highly conductive and elastic conductors made from silver nanowires. At the time, Dr. Zhu said the conductors could be used to create stretchable electronics with applications in wearable, multifunctional sensors. Two years later, the NC State researchers have developed just such a sensor.  Read More

Prof. Zhong Lin Wang with one of the piezo-phototronic LED arrays

What do electronic signatures, fingerprint scans and touch-sensitive robot skin have in common? All three technologies may soon be advancing, thanks to a new system that turns an array of zinc oxide nanowires into tiny LEDs. Each wire illuminates in response to externally-applied mechanical pressure. By analyzing the resulting mosaic of miniscule points of light, a computer is able to produce a high-resolution map of the pressure-applying surface.  Read More

One of the titanium dioxide filaments, that make up the shag carpet coating

Like a lot of things, bone cells grow and reproduce quicker on textured surfaces than on smooth ones. With that in mind, a team of scientists from Ohio State University are developing a new coating that could allow implants such as artificial hips to bond with bones faster. That coating is described as “a microscopic shag carpet made of tiny metal oxide wires.”  Read More

The new electrodes are made from a film consisting of graphene and silver nanowires (Image...

Transparent electrodes are in and of themselves nothing all that new – they’re currently used in things like touchscreens and flat-screen TVs. Thanks to research being conducted at Indiana’s Purdue University, however, a new class of such electrodes may soon find use in a variety of other applications, including flexible electronic devices.  Read More

Scientists have used etched silicon nanoparticles in the anode of a next-generation lithiu...

In some peoples’ opinion, electric cars won’t become truly viable until their batteries offer a lot more driving range, and can be recharged much more quickly than is currently possible. Well, those people may soon be getting their wish. Scientists at the University of Southern California have developed a new type of lithium-ion battery, that they claim holds three times as much energy as a conventional li-ion, and can be recharged in just ten minutes.  Read More

Swedish researchers believe that size is they key to furthering the development of nanowir...

In a breakthrough that could lead to more efficient and cheaper solar cells, scientists at Sweden's Lund University claim to have identified the ideal diameter for nanowires to convert sunlight into electricity.  Read More

A microscope image of some of the wired tissue (Image: Boston Children's Hospital)

Under its human skin, James Cameron’s Terminator was a fully-armored cyborg built out of a strong, easy-to-spot hyperalloy combat chassis – but judging from recent developments, it looks like Philip K. Dick and his hard-to-recognize replicants actually got it right. In a collaboration between Harvard, MIT and Boston Children's Hospital, researchers have figured out how to grow three-dimensional samples of artificial tissue that are very intimately embedded within nanometer-scale electronics, to such an extent that it is hard to tell where one ends and the other begins. It could lead to a breakthrough approach to studying biological tissues on the nanoscale, and may one day be used as an efficient, real-time drug delivery system – and perhaps, why not, even to build next-generation androids.  Read More

A team of scientists have created elastic conductors using silver nanowires, which are sai...

Earlier this year, a team led by North Carolina State University’s Dr. Yong Zhu reported success in creating elastic conductors made from carbon nanotubes. Such conductors could be used in stretchable electronics, which could in turn find use in things like bendable displays, smart fabrics, or even touch-sensitive robot skin. Now, he has made some more elastic conductors, but this time using silver nanowires – according to Zhu, they offer some big advantages over carbon nanotubes.  Read More

Looking for something? Search our 26,500 articles