Advertisement

Nanowires

Energy

Nanowire battery electrode powers through hundreds of thousands of charge cycles

With high conductivity and a large surface area, nanowires have become quite the candidate for an advanced battery material. But at thousands of times thinner than a human hair, their delicate nature often causes them to fracture throughout the battery cycle. By designing a nanowire-based electrode with a special protective coating, researchers now claim to have overcome this limitation, which could lead to batteries able to withstand hundreds of thousands of recharge cycles.Read More

Science

A touch of silver lets smart windows go from clear to translucent

Imagine if instead of installing curtains or blinds, you could simply adjust the opacity of the glass in your windows. Not only would this allow you to vary the amount of privacy they provided, but it would also let you determine how much sunlight got through, keeping rooms from overheating during the day yet still letting light in later on. Well, that's how the various types of smart windows work. Researchers at Harvard University have now developed one of their own, which they say is simpler and cheaper than what's come before.Read More

Electronics

Growing nanowire lasers directly on silicon promises to simplify photonic chip design

For over half a century, Moore's Law, which predicts that processor performance would double roughly every 18 months, has held true. But as electronics grow smaller and smaller, fundamental physical barriers loom ahead. To help stave off that day, a team of physicists at the Technical University of Munich (TUM) is working on nanowire lasers that are a thousand times thinner than a human hair and may one day lead to economical, high-performance photonic circuits.Read More

Environment

Artificial photosynthesis breakthrough turns CO2 emissions into plastics and biofuel

Scientists at the Lawrence Berkeley National Laboratory and the University of California, Berkeley have created a hybrid system of bacteria and semiconducting nanowires that mimics photosynthesis. According to the researchers, their versatile, high-yield system can take water, sunlight and carbon dioxide and turn them into the building blocks of biodegradable plastics, pharmaceutical drugs and even biofuel. Read More

Electronics

World's first light-activated, molecule-sized switch gets turned on

In the pursuit of ever-shrinking circuitry for nanotechnology electronics, increasingly smaller devices and components are being developed. Now researchers at the University of Konstanz and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) claim to have micro-miniaturized the humble electrical switch all the way down to molecule size and proven its operation for the very first time. Unable to flick such a tiny switch mechanically, however, the researchers instead used light to turn it on. Read More

Science

Copper nanowire coating could lead to shatterproof smartphone screens

Chances are that the touchscreen on your smartphone or tablet incorporates a coating of indium tin oxide, also known as ITO or tin-doped indium oxide. Although it's electrically conductive and optically transparent, it's also brittle and thus easily-shattered. Scientists at Ohio's University of Akron, however, are developing something that could ultimately replace the material. They've created an electrode coating that's not only as transparent and more conductive than ITO, but is also far tougher. Read More

Electronics

Researchers create flexible wires that could double as batteries

We literally live in a wired world, with wires snaking hither and yon transmitting electricity and data. Many are visible, while many more are hidden in the walls of buildings, the panels of cars, and the fuselage of aircraft. Now, imagine; what if we were able to turn each and every one of these into a battery that not only transmitted electricity but stored it too? Well, two researchers from the University of Central Florida (UCF) imagined that too, and came up with a way to use nano-technology to make wires with supercapacitance that may eventually also double as batteries.Read More

Health & Wellbeing

New antibacterial fabric kills infectious bacteria within 10 minutes

With a well established ability to kill off bacteria, silver has come to play a significant role in the development of antimicrobial materials. Indeed, we've seen it used in keyboards, built into water filtration systems and deployed in washing machines as a means of fending off germs. The latest effort to harness the bacteria-fighting qualities of silver comes from researchers at Australia's RMIT University working with scientists from the CSIRO, who have developed an antibacterial fabric capable of killing off E. coli and other infectious bacteria within 10 minutes of contact. Read More

Science

Silver nanowire "fingerprints" may be used to fight counterfeiting

The counterfeiting of high-end products is a growing problem, and has led to the development of countermeasures such as invisible woven patterns, butterfly wing-inspired printing techniques, and even synthetic DNA. One of the drawbacks of some of these approaches, however, is the fact that implementing them can be quite a complex process. Now, a team from the Korea Advanced Institute of Science and Technology (KAIST) has come up with something simpler – tiny jumbles of nanowires that form item-specific "fingerprints." Read More

    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning