Introducing the Gizmag Store

Nanotechnology

The nanodevice consists of a sensor and transmitter (left), a capacitor (middle), and a na...

Scientists from the Georgia Institute of Technology recently reported the development of what they say is the world’s “first self-powered nano-device that can transmit data wirelessly over long distances.” The tiny device is able to operate battery-free, using a piezoelectric nanogenerator to create electricity from naturally-occurring mechanical vibrations.  Read More

Scientists have applied conductive nanocoatings to textiles, which could pave the way for ...

Not long ago, we reported on a prototype thin, flexible smartphone known as the Paperphone. While it isn’t actually made out of paper, the success of a research project at North Carolina State University indicates that phones in the future could be. Scientists there have been able to deposit conductive nanocoatings onto textiles, meaning that items such as pieces of paper or clothing could ultimately be used as electronic devices.  Read More

A scanning electron microscope image of a pattern imprinted on nanoporous gold, using DIPS...

Imagine how long it would have taken to produce vinyl record albums if, instead of pressing them from master molds, the grooves had to be etched into each individual LP? Well, that's pretty much been the case when it comes to creating devices from porous nanomaterials - the microscopic patterns necessary for their functioning have had to be applied to each individual nanodevice, requiring considerable time and a perfect environment. Now, however, researchers from Nashville's Vanderbilt University have developed a system for quickly stamping out whole batches of the devices.  Read More

A newly-created carbon nanofiber patch could be used to regenerate heart cells, killed by ...

When someone has a heart attack, the cells in the affected area of the heart die off, and the damage can’t be repaired. In the not-so-distant future, however, that may not be the case. Engineers from Rhode Island’s Brown University, working with colleagues in India, have created a carbon nanofiber patch that has been shown to regenerate heart cells. It is hoped that such patches could eventually be placed on the heart, like a Band-Aid, to regrow dead areas.  Read More

Richard Taylor is growing fractal nanoflowers from metal nanoparticles, that may someday b...

What do trees, rivers, clouds and neurons have in common? They're all examples of fractals, or irregularly-shaped objects in which any one component is the same shape as the whole – a tributary of a river, for instance, looks like a miniature river itself. Electronic chips are not fractals, yet some researchers are trying to restore sight to the blind by attaching such chips to the eye's neurons. Given that neurons are fractals, wouldn't it work better to hook them up to other fractal structures? University of Oregon researcher Richard Taylor thinks so, which is why he's developing metal "nanoflowers."  Read More

The mixing entropy battery could be used to build power plants at estuaries where fresh wa...

Scientists at Stanford have developed a battery that uses nanotechnology to create electricity from the difference in salt content between fresh water and sea water. The researchers hope to use the technology to create power plants where fresh-water rivers flow into the ocean. The new "mixing entropy" battery alternately immerses its electrodes in river water and sea water to produce the electrical power.  Read More

DermaFuse, a glass nanofiber material that looks like cotton candy, has been shown to spee...

Many diabetics suffer from a condition known as venous stasis, which can result in wounds on their extremities that remain unhealed for up to several years – if infection sets in, amputation of the limb is sometimes even necessary. Such wounds can sometimes be treated with vacuum-assisted systems, but the equipment required is expensive, and must be carried by the patient at all times. In clinical trials conducted last year, however, human venous stasis wounds were quickly and thoroughly healed with an inexpensive new glass nanofiber material, that looks like cotton candy.  Read More

A diagram depicting how a nanobead-equipped chemical assay device could work (Image: OSU)

Handheld biosensors and diagnostic devices could be taking a huge step forward, thanks to recent advances made in the use of ferromagnetic iron oxide nanoparticles – also known as magnetic nanobeads. According to scientists from Oregon State University (OSU), the use of such particles in chemical detection systems could make those systems much smaller, faster, cheaper to produce, and more accurate than they are presently.  Read More

The M13 virus consists of a strand of DNA (the figure-8 coil on the right) attached to a b...

Last year, researchers from the Massachusetts Institute of Technology (MIT) announced that they had successfully used carbon nanotubes for "funneling" and concentrating electrons in photovoltaic cells – this meant that smaller solar cells created using the nanotubes could produce as much or more electricity than larger conventional cells. Now, the efficiency of these nanotube solar cells is being boosted further ... with the help of a virus.  Read More

Scientists from the Georgia Institute of Technology are claiming to have created the world...

For the past several years, scientists from around the world have been engaged in the development of nanogenerators – tiny piezoelectric devices capable of generating electricity by harnessing minute naturally-occurring movements, such as the shifting of clothing or even the beating of a person's heart. So far, while they may have worked in principle, few if any of the devices have been able to generate enough of a current to make them practical for use in consumer products. Now, however, scientists from the Georgia Institute of Technology are claiming to have created "the world's first practical nanogenerator."  Read More

Looking for something? Search our 26,495 articles