Converting light to electricity is one of the pillars of modern electronics, with the process essential for the operation of everything from solar cells and TV remote control receivers through to laser communications and astronomical telescopes. These devices rely on the swift and effective operation of this technology, especially in scientific equipment, to ensure the most efficient conversion rates possible. In this vein, researchers from the Institute of Photonic Sciences (Institut de Ciències Fotòniques/ICFO) in Barcelona have demonstrated a graphene-based photodetector they claim converts light into electricity in less than 50 quadrillionths of a second. Read More
The use of optical sound-on-film recording on early movie films revolutionized the motion picture industry and remained the standard method of audio recording in that medium for more than 80 years. Now researchers from the University of Illinois have emulated that feat in miniature by claiming to have recorded the world's first optically encoded audio onto a plasmonic film substrate. The size of human hair, this substrate has a capacity over five-and-a-half thousand times greater than conventional analog magnetic recording media. Read More
If electronic circuits could automatically reconfigure their internal conductive pathways as required, microchips could function as many different circuits on the one device. If many of these devices were then incorporated into larger pieces of equipment, such as robots, it is possible that self-sufficient, self-sustaining machines could change to suit their environment or even reconfigure broken or damaged pathways to repair themselves. Promising applications like these – and more – could one day be made possible if technology resulting from recent research into atomic manipulation at École polytechnique fédérale de Lausanne (EPFL) comes to fruition. Read More
Due to its huge potential in applications ranging from cheaper vaccinations to energy-storing car panels, there's plenty of excitement surrounding the emergence of nanotechnology. But a team of scientists are urging caution, with a study conducted at the Technion-Israel Institute of Technology suggesting that exposure to silicon-based nanoparticles may play a role in the development of cardiovascular disease. Read More
The development of brain plaques are thought to correlate with symptoms of Alzheimer’s disease, such as memory loss. Previous research has indicated that limiting these buildups could be the key to tackling the disease, but scientists from Northwestern University are digging a little deeper. The team has devised a non-invasive MRI technique capable of tracking the specific toxins that accumulate to form plaques, potentially enabling doctors to pick up early signs of the disease before it starts to take hold. Read More
A new experimental, non-invasive medical technique is promising to precisely deliver drug-carrying metal nanorods anywhere inside the body and image tissue with cellular resolution. If perfected, the approach could be used to treat inoperable deep-tissue tumors, brain trauma, and vascular or degenerative diseases. Read More
A promising new study suggests that a wireless, light-sensitive, and flexible nanotube-semiconductor nanocrystal film could potentially form part of a prosthetic device to replace damaged or defective retinas. The film both absorbs light and stimulates neurons without being connected to any wires or external power sources, standing it apart from silicon-based devices used for the same purpose. It has so far been tested only on light-insensitive retinas from embryonic chicks, but the researchers hope to see the pioneering work soon reach real-world human application. Read More
As electronic devices continue to get smaller, one question becomes increasingly pertinent – how will we power them? Well, smaller batteries would seem to be the most obvious answer. With that in mind, researchers at the University of Maryland have succeeded in creating a tiny battery that incorporates even smaller structures, known as nanopores. Read More
Imagine opening up an electric car and finding no batteries. An absent-minded factory worker or magic? Perhaps neither. If nanotechnology scientists led by the Queensland University of Technology (QUT) are on the right track, it may one day be a reality as cars are powered not by batteries, but their body panels – inside which are sandwiched a new breed of supercapacitors. Read More
The very same building blocks that make us have been successfully programmed to form 32 differently-shaped crystal structures. The structures feature a precisely-defined depth and a variety of sophisticated 3D nanoscale attributes, thereby laying further foundations for the use of DNA to revolutionize nanotechnology. Read More