Introducing the Gizmag Store

Nanoparticles

A nanoparticle-based surgical adhesive might soon take the place of sutures, staples or po...

In the ongoing quest to develop better ways of sealing wounds within the body, scientists have created surgical adhesives inspired by porcupine quills, mussels and slugs. Not all good ideas have to come from the animal kingdom, however. Recently, French researchers have had success in repairing internal organs using an adhesive solution that incorporates either silica or iron oxide nanoparticles.  Read More

MIT's new nanoparticle carries three cancer-fighting drug molecules — doxorubicin is red, ...

Delivering drugs that can knock out tumor cells within the body, without causing adverse side effects, is a tricky busines. It's why scientists have taken to engineering new and creative types of nanoparticles that do the job. Increasing a nanoparticle's ability to carry more drugs expands treatment options, but creating nanoparticles capable of delivering more than one or two drugs has proven difficult – until now. Scientists at MIT report creating a revolutionary building block technique that's enabled them to load a nanoparticle with three drugs. The approach, they say, could be expanded to allow a nanoparticle to carry hundreds more.  Read More

A rendering of a nanoparticle trapped in a laser and in thermal non-equilibrium (Image: Iñ...

It may be a little late for April Fool’s, but your skepticism is nonetheless warranted when reading that researchers have shown nanoparticles to disobey a fundamental law of physics which dictates the flow of entropy and heat in, it was believed, any situation. Specifically, researchers from three universities theoretically proposed then demonstrated that a nanoparticle in a state of thermal non-equilibrium does not always behave as larger particles might under the same conditions, with implications for various fields of research.  Read More

An MIT rendering of a bacterial cell, trailing fibers containing gold nanoparticles and qu...

Scientists at MIT are developing hybrid materials that are a cross between living bacterial cells and non-living components such as gold nanoparticles or quantum dots. The resulting "living materials" are able to respond to their environment like regular living cells, while also doing things like conducting electricity or emitting light.  Read More

The new coating protects airplane engine components from heat damage, while lasting longer...

The higher the temperature at which an aircraft engine is able to run, the more efficiently it uses fuel. In order to run at those high temperatures, the metal components of airplane engines are presently treated with heat-shielding coatings. Scientists at Sweden's University West, however, are developing a new such coating that is said to be far more effective than anything presently used – it could extend the service life of engines by 300 percent.  Read More

By infusing the leaves of an Arabidopsis thaliana plant with nanoparticles, MIT researcher...

In 2010, Stanford University researchers reported harnessing energy directly from chloroplasts, the cellular "power plants" within plants where photosynthesis takes place. Now, by embedding different types of carbon nanotubes into these chloroplasts, a team at MIT has boosted plants' ability to capture light energy. As well as opening up the possibility of creating "bionic plants" with enhanced energy production, the same approach could be used to create plants with environmental monitoring capabilities.  Read More

New technology could allow vaccines to be produced when and where they're needed (Photo: S...

Researchers from the University of Washington have created a vaccine with the potential to make on-demand vaccination cheaper and quicker, using engineered nanoparticles. Tests with mice show definite promise for the technology's use on humans.  Read More

The 'pomegranate' design reduces the surface area of the cluster to one tenth of the sum o...

Though the use of silicon in lithium-ion batteries promises a whole new world of energy storage, it also poses several problems to a battery's durability and overall performance. A new electrode design inspired by clusters of pomegranate seeds and developed by researchers at the Department of Energy's National Accelerator Laboratory (SLAC) and Stanford University, overcomes some of these obstacles, bringing lighter and more powerful batteries closer to reality.  Read More

Immunofluorescence image shows nanoparticles targeted to endothelial cells – the red parti...

In recent years, we've seen various research efforts looking to specifically target cancer cells as a replacement for the shotgun approach employed by chemotherapy that also damages healthy cells. The trick is to develop a delivery vehicle that identifies and targets only cancer cells, while ignoring the healthy ones. Researchers have found charged polymers have this ability, opening the door for nanoparticles containing cancer-fighting drugs to deliver their payload directly to the cancer cells.  Read More

The new transparent display developed at MIT offers a wide viewing angle

There are a number of approaches currently used to create transparent displays, such as transparent OLED and LCD displays or simple reflection, however, most are limited in terms of viewing angle. Researchers at MIT have come up with a new system that is low-cost and offers a wide angle of view with the projected image appearing on the transparent material itself.  Read More

Looking for something? Search our 26,558 articles