Scientists accidentally create nanorods that harvest water from the air

Learning from your mistakes is a key life lesson, and it's one that researchers at Pacific Northwest National Laboratory (PNNL) can attest to. After unintentionally creating carbon-rich nanorods, the team realized its accidental invention behaves weirdly with water, demonstrating a 20-year old theory and potentially paving the way to low-energy water harvesting systems and sweat-removing fabrics.Read More


Coal-based electronics: A potential usurper to silicon's throne?

Graphene may be the poster child of thin film electronics, and silicon the current king of materials for semiconductors, but if scientists from MIT get their way, graphene's humble cousin, coal, could soon be giving them both a run for their money. For the first time, electronic devices have been created from thin films of coal and the research points to a range of uses that this cheap and abundant material could have in electronic devices, solar panels, and batteries.Read More


Metamaterial paves way for thermophotovoltaic cells that generate electricity in the dark

Using a new optical magnetic metamaterial claimed to have revolutionary properties, physicists from the Australian National University (ANU) and the University of California Berkeley (UC Berkeley) have produced a prototype device that could be used in super-efficient thermophotovoltaic cells. These cells do not need direct sunlight to generate electricity, but instead absorb infrared radiation to convert to electric current and, unlike conventional photovoltaic cells, can do so even in the dark.Read More


Biodegradable implant could simplify bone replacement surgery

Combining cornstarch with volcanic ash clay to create a plastic for bone grafts could make the surgical process of bone replacement much simpler in the future. Researchers say the material could replace the need to remove bone from another part of a patient's body, or to use donor cadaver bones that are limited in supply.Read More


"Nano-accordion" conductors may find use in flexible and stretchable electronics

A new conductive, transparent, and stretchable nanomaterial that folds up like an accordion could one day be applied to the development of flexible electronics and wearable sensors, as well as stretchable displays. The researchers at North Carolina State University who created this "nano-accordion" structure caution that it is early days yet, but they hope to find ways to improve its conductivity and eventually scale it up for commercial or industrial use.Read More


Inkless printing manipulates light at the nanoscale to produce colors

Using nanometer-size metamaterials, researchers at Missouri University of Science and Technology have developed a technique to print images that uses the manipulation of light, rather than the application of ink, to produce colors. This "no-ink" printing method has been demonstrated by producing a Missouri S&T athletic logo just 50 micrometers wide.

Read More

Image captures light as both wave and particle for very first time

In 1905, Albert Einstein provided an explanation of the photoelectric effect – that various metals emit electrons when light is shined on them – by suggesting that a beam of light is not simply a wave of electromagnetic radiation, but is also made up of discrete packets of energy called photons. Though a long accepted tenet in physics, no experiment has ever directly observed this wave/particle duality. Now, however, researchers at the École polytechnique fédérale de Lausanne (EPFL) in Switzerland claim to have captured an image of this phenomenon for the first time ever.Read More


Buckyballs and diamondoids combined to create molecule-sized diode

Scientists working at the Stanford Institute for Materials and Energy Sciences (SIMES) claim to have created a molecule-sized electronic component just a few nanometers long that conducts electricity in only the one direction. In essence, a rectifier diode, but one so small that it may one day help replace much bulkier diodes and other semiconductors found on today's integrated circuits to produce incredibly compact, super-fast electronic devices.Read More


Nanoscale anti-counterfeiting tech reveals hidden image when breathed upon

Allowing consumers to identify counterfeit goods is a tricky and expensive problem, as many security measures such as holograms might be easily mimicked by counterfeiters. A new nanoscale printing technique, however, allows researchers to create labels that reveal a "watermarked" image when breathed upon by the consumer. The labels are scalable and durable, and can be applied to many surfaces, yet are beyond the hands of those who might try to mimic them to fool consumers. Read More


    See the stories that matter in your inbox every morning