Advertisement

Molecules

Electronics

World's smallest diode made from a single DNA molecule

As electronic devices become ever more complex, and the densities of components in those devices increases exponentially, we are rapidly approaching the day when the limitations of Moore's Law will be realized. In an effort to avert this eventuality, research has concentrated on moving away from traditional silicon technologies and into the realms of molecule-sized components and alternative materials. In this vein, researchers at the University of Georgia (UGA) and Ben-Gurion University in Israel have, for the first time, created a nanoscale electronic diode from a single DNA molecule.
Read More

Science

Scientists can now make their own molecules

Sometimes, if you want something made right, you've just got to make it yourself. That could certainly be the case when using molecules to construct microscopic devices such as medication-delivering nano-robots. It was with such applications in mind that scientists from ETH Zurich and IBM recently developed a process for building custom molecules from mix-n-match components.Read More

Medical

Primordial goo coating to aid in medical procedures

Prebiotic compounds that promote the growth of microorganisms, such as bacteria and fungi, can be traced back billions of years to their origins in the primordial goo – a rich soup of compounds from which all organic life on Earth is theorized to have begun. Now, scientists at Australia's CSIRO have discovered just how good a rich broth of these early molecules may be at improving the acceptance of implanted medical devices in the human body.Read More

Space

Boozy comet Lovejoy houses building blocks for life

Astronomers have discovered large quantities of alcohol and sugar, as well as the presence of complex organic molocules, on the comet Lovejoy. The observations, made by the 30 meter (98 ft) radio telescope at Pico Veleta, Spain, support the theory that comets may have played an important role in the formation of life on Earth.
Read More

Electronics

World's first light-activated, molecule-sized switch gets turned on

In the pursuit of ever-shrinking circuitry for nanotechnology electronics, increasingly smaller devices and components are being developed. Now researchers at the University of Konstanz and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) claim to have micro-miniaturized the humble electrical switch all the way down to molecule size and proven its operation for the very first time. Unable to flick such a tiny switch mechanically, however, the researchers instead used light to turn it on. Read More

Biology

Machine automatically assembles complex molecules at the microscopic level

The synthesis of complex small molecules in the laboratory is specialized and intricate work that is both difficult and time-consuming. Even highly-trained chemists can take many years to determine how to build each one, let alone discover and describe its functions. In an attempt to improve this situation, a team of chemists at the University of Illinois claim to have created a machine that is able to assemble a vast range of complex molecules at the push of a button.Read More

Space

Discovery of new molecule suggests origins of life may reside in interstellar space

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) group of radio telescopes have discovered a carbon-based molecule with a branched structure – a common feature in molecules that are required for life to form. Contained within a giant gas cloud in the star-forming region of Sagittarius B2, the molecule of isopropyl cyanide is the first hint that other complex molecules may form in space before finding their way to the surface of planets. Read More

Science

Borospherene bounces into buckyball family

Buckyballs (or Buckminsterfullerene), the soccer ball-like structures of 60 carbon atoms, have a new playmate. Previously only theorized, researchers from Brown University in the US and Shanxi and Tsinghua Universities in China have been the first to experimentally observe a boron "buckyball."Read More

3D Printing

3D-printed molecule provides new perspective for cancer research

While two-dimensional modeling of double-stranded DNA molecules has been useful for the purpose of cancer research, the composition of the G-quadruplex, a four-stranded DNA sequence, has proven a different beast. A 3D printing lab at the University of Alabama has successfully produced a physical model of its molecular structure, improving understanding of its makeup and potentially, helping develop a treatment for pancreatic cancer. Read More

Science

New photonic molecules are not unlike lightsabers

Scientists from Harvard and MIT have jointly demonstrated that, in specific conditions, photons can be made to interact with each other and form molecules. Such groupings of photons, dubbed “Photonic molecules”, constitute an entirely new form of matter, which until recently was purely theoretical. Combining the properties of light and those of solids, in terms of physics this new form of matter is not unlike a certain material that millions of Star Wars fans are already well familiar with. Lightsaber material. Read More

    Advertisement
    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement