Advertisement
more top stories »

MIT


— Environment

Electrodialysis identified as potential way to remove salt from fracking waste water

Fracking is a highly controversial and divisive issue. Proponents argue that it could be the biggest energy boom since the Arabian oil fields were opened almost 80 years ago, but this comes at a serious cost to the environment. Among the detrimental effects of the process is that the waste water it produces is over five times saltier than seawater, which is, to put it mildly, not good. A research team led by MIT that has found an economical way of removing salt from fracking waste water that promises to not only reduce pollution, but conserve water as well. Read More
— Environment

MIT's new cement recipe could cut carbon emissions by more than half

As one of our most relied upon construction materials, concrete makes a significant contribution to our overall carbon emissions. Calcium-based substances are heated at high temperatures to form the cement, a process that produces carbon dioxide. But by slightly altering the quantities of materials used, scientists from MIT have uncovered a new method of cement mixing that could reduce these emissions by more than half. Read More
— Robotics

Hull-clinging robots could perform secret searches of smugglers' boats

Maritime smugglers will often hide contraband in false hulls or propeller shafts within their boats. While there are ways in which port authorities can search for such stashes, the smugglers often have time to ditch their illicit goods before those searches can be performed. However, what if there were stealthy, inexpensive, underwater hull-hugging robots that could check the boats out, without the crews even knowing they were there? That's just what a team at MIT is developing. Read More
— Robotics

GelSight sensor lets robots "see" through their hands

Three years ago, we first heard about GelSight – an experimental new system for imaging microscopic objects. At the time, its suggested applications were in fields such as aerospace, forensics, dermatology and biometrics. Now, however, researchers at MIT and Northeastern University have found another use for it. They've incorporated it into an ultra-sensitive tactile sensor for robots. Read More
— Science

Shellfish proteins inspire waterproof wonderglue

Clingy barnacles might be something of a nuisance for seafarers, but these stubborn shellfish and their relatives could hold the key to a new breed of sticky materials. Engineers from MIT have created waterproof adhesives based on the proteins that give these creatures such qualities, a development that could one day be used in ship repairs or medical applications. Read More
— Space

Future skintight spacesuits could snug up at the touch of a button

Our stereotype of a spacesuit involves an astronaut clad in a bulky white outfit like some outer space Michelin Man wearing a rucksack – and about as graceful. But if an MIT team has any say, the spacesuit of the future will be a snug, form-fitting outfit that’s not only lighter and more flexible but also easier to get on, automatically tightening up to a proper fit at the touch of a button. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement