Advertisement
more top stories »

MIT

— Science

New record efficiency for quantum-dot photovoltaics

By - May 27, 2014 1 Picture
Flexible, inexpensive, large-area, lightweight solar cells are difficult to produce as they require an inert atmosphere and high temperatures, and they often degrade in a short time after exposure to air. Researchers at MIT, however, have used a new method to craft solar cells from ultra-thin layers of quantum dots in a process that promises to avoid these problems, and at room temperature. At the same time, they have also set a new record of nine percent for the most efficient quantum-dot solar cells produced to date. Read More
— Science

MIT finds new way to harvest energy from heat

By - May 23, 2014 2 Pictures
Researchers at MIT and Stanford have found a new way to transform waste heat into electricity, particularly in situations where the temperature gradient is small, below 100º C (180° F). The technology uses widely available materials, and could be used to recycle the large amounts of wasted heat generated in industrial processes and electric power plants. Read More
— Science

Researchers create 3D neuron imaging system

By - May 21, 2014 1 Picture
A team of researchers from the University of Vienna and MIT have developed a novel way of observing the behavior of neurons on a brain-wide scale. The discovery has potential applications in the medical field, allowing scientists to pinpoint the specific cells involved in a brain disorder, thus aiding them in tailoring a focused course of treatment. Read More
— Electronics

MIT develops glasses-free 3D projector as a "practical alternative to holographic video"

By - May 18, 2014 1 Picture
The 3D format has had something of a renaissance in recent years, but the technology still has some way to go before the potential of "real-life" multiperspective 3-D can be realized. The Camera Culture group at the MIT Media Lab is developing a new 3D video projection system that doesn't require glasses and provides different users different perspective angles of the same object. The team sees it not as a final answer, but as a transitional system that sits between current technologies and true holographic video. Read More
— Space

Analysis of fossil galaxy may shed new light on the composition of the early universe

By - May 2, 2014 2 Pictures
A team of researchers, including scientists from MIT and the Carnegie Institution of Science, has analyzed the chemical composition of stars in the fossil galaxy known as Segue 1. The dwarf galaxy, containing roughly 1,000 stars, sits 75,000 light years away from Earth, and is host to a set of unusual features that are allowing astronomers to observe the composition of stars from the early universe. Read More
— Science

2D self-assembling semiconductor could beat out graphene

By - May 2, 2014 2 Pictures
Graphene may be talked about as the future wonder material (and for that matter, the present one), but it has one critical deficiency. It lacks a natural bandgap, the physical trait that puts the “semi” in “semiconductor," so it has to be doped to become effective. Enter Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 ... well, you can refer to it as a metal-organic graphene analogue for now. In addition to having a natural band gap, it’s able to self-assemble and represents a whole family of compounds that’s exciting to researchers for its novel properties. Read More
— Science

Floating nuclear plants could prove tsunami-proof

By - April 17, 2014 2 Pictures
The most frightening part of a tsunami hitting a nuclear power plant is what comes after – radioactive leaks that contaminate the water around the plant are exceedingly difficult to contain. The clean up of the radioactive water around the Fukushima Daiichi nuclear plant in Japan, which was struck by a tsunami in 2011, is expected to take decades. MIT researchers have come up with an alternative; they propose building floating nuclear plants, far enough offshore to simply ride out a tsunami and emerge unscathed. Read More
— Medical

Drug-delivering nanoparticles pose a triple threat to cancer

By - April 16, 2014 2 Pictures
Delivering drugs that can knock out tumor cells within the body, without causing adverse side effects, is a tricky busines. It's why scientists have taken to engineering new and creative types of nanoparticles that do the job. Increasing a nanoparticle's ability to carry more drugs expands treatment options, but creating nanoparticles capable of delivering more than one or two drugs has proven difficult – until now. Scientists at MIT report creating a revolutionary building block technique that's enabled them to load a nanoparticle with three drugs. The approach, they say, could be expanded to allow a nanoparticle to carry hundreds more. Read More
Advertisement

Subscribe to Gizmag's email newsletter

Advertisement