Photokina 2014 highlights

MIT

The MIT Biosuit uses counter pressure instead of an inflated suit

Our stereotype of a spacesuit involves an astronaut clad in a bulky white outfit like some outer space Michelin Man wearing a rucksack – and about as graceful. But if an MIT team has any say, the spacesuit of the future will be a snug, form-fitting outfit that’s not only lighter and more flexible but also easier to get on, automatically tightening up to a proper fit at the touch of a button.  Read More

MIT researchers have come up with a 3D printed, soft-shelled, disembodied tentacle robot t...

Once upon a time, robots were imagined as human-like machines with a distinct body complete with head, arms, hands, feet, and legs. More recently, designers have explored the benefits of emulating other creatures and their capabilities, with robots that can fly like birds, run like cheetahs, swim like a squids or, in this case, slither like snakes. Researchers at MIT's Computer Science and Artificial Intelligence Lab (CSAIL) have come up with a single 3D printed, soft-shelled tentacle that is designed to navigate through all manner of pipes, channels, and burrows.  Read More

Researchers at MIT have created an untethered, electrically powered robotic cheetah

Researchers at MIT have announced the latest developments in their robotic cheetah project. The project aims to provide insights into how cheetahs can move so quickly. The cheetah is now "wireless" and is electrically powered.  Read More

Hitachi is developing a new reactor that burns transuranium elements, such as those produc...

The problem with nuclear waste is that it needs to be stored for many thousands of years before it’s safe, which is a tricky commitment for even the most stable civilization. To make this situation a bit more manageable, Hitachi, in partnership with MIT, the University of Michigan, and the University of California, Berkeley, is working on new reactor designs that use transuranic nuclear waste for fuel; leaving behind only short-lived radioactive elements.  Read More

The benefits of using sound to separate cells over conventional more aggressive methods me...

Researchers from MIT, Carnegie Mellon University and Pennsylvania State University have developed a novel technique of separating cells with the use of a gentle sound wave. The technique could potentially be used to screen a patient's blood, allowing medical practitioners to isolate rare tumor cells synonymous with diseases such as cancer.  Read More

A new algorithm developed at MIT enables delivery drones to better preserve their health i...

The prospect of delivery drones brings with it a few notable issues. Beyond visions of colliding rotor blades and unsolicited package drops lies another problem: the huge amount of computational power needed to take into account real world uncertainties, such as strong winds, limited battery life and navigational errors, in order to provide a reliable delivery service. This has been the focus of new study from MIT, with a team of researchers devising a new algorithm said to massively reduce the level of computation required, enabling the drone to monitor its "health" in real time.  Read More

MIT's porous tissue scaffold, as imaged by an electron microscope (Image: MIT)

A team of chemical engineers from MIT has developed a new method of stimulating bone growth, by utilizing the same chemical processes that occur naturally in the human body following an injury such as a broken or fractured bone. The technique involves the insertion of a porous scaffold coated with growth factors that prompt the body's own cells to naturally mend the damaged or deformed bone.  Read More

MIT hopes to turn old lead batteries into new solar cells (Image: Christine Daniloff/MIT)

The world of modern technology is one of out with the old, in with the new. For battery technology, that means the expected demise of lead-acid batteries and replacement by a more efficient, cheaper, and environmentally-friendly alternative. This is good news, but leaves the problem of what to do with all the lead in the batteries currently in use when the time comes to dispose of them? Researchers at MIT have an answer – use it to make solar cells.  Read More

A self-folding mobile prototype developed by researchers at MIT and Harvard (Photo: Harvar...

An origami-inspired robot that self-assembles and then scuttles away under its own power has been revealed by researchers from Harvard University and MIT. Still in the experimental stage, the prototype is able to transform itself from a flat structure into a moving, functional machine in around four minutes before scrambling away under its own power at a speed of about 2 in (5 cm) per second.  Read More

A microscope cross-sectional view of the material, in which the microhairs are standing st...

What if your house's windows could automatically reduce the amount of hot sunlight passing through them, or your car's windshield could cause rain droplets to bead off to its edges? These things and more could soon be possible, thanks to a new animal hair-inspired material developed at MIT.  Read More

Looking for something? Search our 28,548 articles