Advertisement
more top stories »

Magnetism


— Materials

Magnetism generated in non-magnetic metals

By subtly altering certain quantum interactions in matter, scientists from the University of Leeds have shown for the very first time how to generate magnetism in metals that aren’t normally magnetic. Synthetic magnets made using this technique may one day reduce our reliance on rare or toxic metals in such things as wind turbines, computer hard drives and magnetic field medical imaging devices.

Read More
— Electronics

New class of "non-Joulian magnets" have potential to revolutionize electronics

Magnets are at the heart of much of our technology, and their properties are exploited in a myriad ways across a vast range of devices, from simple relays to enormously complex particle accelerators. A new class of magnets discovered by scientists at the University of Maryland (UMD) and Temple University may lead to other types of magnets that expand in different ways, with multiple, cellular magnetic fields, and possibly give rise to a host of new devices. The team also believes that these new magnets could replace expensive, rare-earth magnets with ones made of abundant metal alloys.

Read More
— Materials

Scientists give graphene one more quality – magnetism

Graphene is extremely strong for its weight, it's electrically and thermally conductive, and it's chemically stable ... but it isn't magnetic. Now, however, a team from the University of California, Riverside has succeeded in making it so. The resulting magnetized graphene could have a wide range of applications, including use in "spintronic" computer chips. Read More
— Science

Stanford researchers control light using synthetic magnetism

Left to its own ways, light will follow the same path through an optical system whether the system is being used as a camera lens or as a projector. This is called time-reversal symmetry, or reciprocity. As many new applications and methods would be enabled by access to a non-reciprocal optical system, it is unfortunate that they have been so difficult to come by. But now researchers at Stanford University have discovered how to make such non-reciprocal systems by generating an effective magnetic field for photons. Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement