Top 100: The most desirable cars of all time

Hydrogels

Fluorescent 3D pattern 180 µm wide (Image: Vienna University of Technology)

Three-dimensional printers are popping up everywhere these days. Some are small enough to fit in a briefcase and others are large enough to build print houses, but scientists at the Vienna University of Technology are going for the microscopic. Earlier this year, the university built a 3D printer that uses lasers to operate on a tiny small scale. Now they're refining the technique to enable precise placement a selected molecule in a three-dimensional material. This process, called “3D-photografting,” can potentially be used to create a “lab on a chip” or artificially grow living tissue.  Read More

Illustration of how the micron-scale swimming robot responds to light (Image: Alexander Al...

How small can a robot get? According to a team of researchers at Georgia Tech, really, really small. Described in the July 23 issue of the journal Soft Matter, the Georgia Tech team has been running complex computational models of swimming robots on the micron (0.001 mm or about 0.000039 inches) scale. At this microscopic level, water takes on very different properties from those of the human scale, but despite these challenges the team believes that such robots could have fascinating practical applications.  Read More

Scientists have created a self-healing hydrogel, that responds to the acidity of its envir...

Velcro is pretty handy stuff, but imagine if there was a soft, stretchy material with the same qualities. Well, now there is. Scientists from the University of California, San Diego have created a self-healing hydrogel that binds together in seconds, essentially copying the Velcro process at a molecular level. The new material could potentially find use in medical sutures, targeted drug delivery, industrial sealants and self-healing plastics.  Read More

Flakes of heart tissue are spun in a beaker, as part of the hydrogel production process

Universities and scientific organizations all over the world are currently looking into ways of growing functioning heart cells on the heart, to replace the tissue that dies when a heart attack occurs. As things currently stand, the body replaces that tissue with non-beating scar tissue, leaving the heart permanently weakened. Most of the experimental techniques for generating new tissue involve introducing some sort of micro-scaffolding to the affected area, providing a framework for new cells to grow on. That scaffolding has consisted of materials such as carbon nanofibers and gold nanowires, which would have to be surgically applied to the heart, sort of like a Band-Aid. Now, however, researchers from the University of California, San Diego are reporting success in animal trials, using an injectable hydrogel.  Read More

Postdoctoral fellow Guoming Sun (left) and Sharon Gerecht, an assistant professor of chemi...

Third-degree burns typically require very complex treatment, and leave nasty scars once they've healed. Researchers at Johns Hopkins University, however, are reporting success at treating such burns on lab mice, using a new type of hydrogel that grows new skin (as opposed to scar tissue) over burn sites. The gel contains no drugs or biological components - it's made mainly from water and dissolved dextran, which is a sugar-like polymer.  Read More

A diagram illustrating how the hydrogel sensor works (Image: Birck Nanotechnology Center, ...

Scientists have used gelatinous hydrogel to create an inexpensive new type of biochemical sensor that is highly sensitive, sturdy, long-lasting, and has few moving parts. The gel expands or contracts according to the acidity of its environment, a quality that allows the sensor to measure changes in pH down to one one-thousandth on the pH scale. This amount of accuracy, along with its robustness, could make it ideal for chemical and biological applications such as environmental monitoring in waterways and glucose monitoring in blood.  Read More

Dr Pete Twigg, Lead Researcher of the Cartilage Repair Project

The University of Bradford, together with spin-out Advanced Gel Technology, is developing a cartilage repair gel that could delay the need for invasive surgery for five years or more. The hydrogel, which is not yet ready for clinical trials, is intended for traumatic injuries, including those sustained in car collisions or sports.  Read More

Looking for something? Search our 29,901 articles
Editor's Choice
Product Comparisons