Shopping? Check out our latest product comparisons

Harvard

Harvard Microrobotics Laboratory is developing 2D objects that can give themselves an extr...

Sure, flat-pack furniture is inexpensive and easy to transport, but when you open the box the first question almost everyone asks is, “Wouldn't it be great if it would assemble itself?” You could get a robot to help, but engineers at the Harvard Microrobotics Laboratory are working on ways to get objects to assemble themselves ... and they might give 3D printing a run for its money at the same time.  Read More

A newly developed optical transistor could be the key to higher-performance CPUs and a lea...

Researchers at MIT, Harvard and the Vienna University of Technology have developed a proof-of-concept optical switch that can be controlled by a single photon and is the equivalent of a transistor in an electronic circuit. The advance could improve power consumption in standard computers and have important repercussions for the development of an effective quantum computer.  Read More

The prototype soft exosuit in action

Powered exoskeletons show great promise both for augmenting the abilities of able-bodied users, and for rehabilitating the disabled. That said, they also tend to be hard-bodied contraptions that don’t look particularly comfortable (or light) to wear. Researchers at Harvard University’s Wyss Institute recently demonstrated what they hope will be a more user-friendly alternative – a “soft exosuit.”  Read More

One of the lithium-ion 'microbatteries'

While we’re currently witnessing the rise of tiny electronic devices such as biosensors, many of those devices do have one limiting factor – they still require not-so-tiny batteries, which ends up somewhat defeating the whole miniaturization process. Although some devices can get their power from external sources, scientists from Harvard University and the University of Illinois at Urbana-Champaign have come up with an alternative ... functional 3D-printed lithium-ion batteries no larger than a grain of sand.  Read More

Harvard Microrobotics Lab's HAMR is an insect-sized robot capable of high speed legged loc...

Though there's much work to be done before miniature robots move exactly like insects, Harvard Microrobotics Lab is making strides with its latest prototypes. It recently demonstrated the Harvard Ambulatory MicroRobot (HAMR), a 4.4 cm quadruped that scurries around at up to 8.4 body lengths per second.  Read More

False-color scanning electron microscope images of some of the crystalline flowers

When we think of crystals, most of us probably either picture spiky things like snowflakes, or cube-shaped objects like grains of sugar. Researchers from the Harvard School of Engineering and Applied Sciences, however, have recently coaxed barium carbonate crystals to grow into very miniature replicas of soft, curved flowers.  Read More

Kepler-76b was identified using the BEER effect (Image: Dood Evan)

Due to their relative faintness compared to their parent stars, most known exoplanets have been discovered using indirect detection methods – that is, detecting the effects they have rather than observing them directly. There are numerous indirect methods that have proven useful in the detection of exoplanets and now yet another, which relies on Einstein’s special theory of relativity, has joined the list with the discovery of an exoplanet known as Kepler-76b.  Read More

Harvard's RoboBees could one day work together in search and rescue operations (Photo: Kev...

Almost since the beginning of their existence, robots have taken inspiration from one of nature's wonders: insects. Technological limitations typically prevent these robots from matching the small size of their many-legged muses, resulting in gargantuan examples like Festo's BionicOpter dragonfly. In stark contrast is Harvard's RoboBee, which is the first in the world to demonstrate controlled flight by an insect-sized robot.  Read More

TakkTile is an inexpensive tactile sensor that incorporates a conventional MEMS barometer

A lot of time and energy is currently going into developing technologies that give robots a sense of touch. In particular, scientists are developing things like artificial skin that lets robots know how much pressure they’re exerting on an object – this allows them to firmly grip rugged objects, while being more delicate with fragile items. Although most such technologies are fairly complex and expensive, researchers have now developed a cheap tactile sensor that could bring touch sensitivity to consumer and hobbyist applications.  Read More

The intestinal worm Pomphorhynchus laevis has provided the inspiration for a new system of...

You’ve gotta love those Pomphorhynchus laevis worms. Although the parasites may feed on fish by attaching themselves to the inside of the host animal’s intestines, they’ve also provided the inspiration for a new system of keeping skin grafts secured over wound sites.  Read More

Looking for something? Search our 28,283 articles