Advertisement
more top stories »

Graphene


— Physics

Graphene optical lens a billionth of a meter thick breaks the diffraction limit

With the development of photonic chips and nano-optics, the old ground glass lenses can't keep up in the race toward miniaturization. In the search for a suitable replacement, a team from the Swinburne University of Technology has developed a graphene microlens one billionth of a meter thick that can take sharper images of objects the size of a single bacterium and opens the door to improved mobile phones, nanosatellites, and computers.

Read More
— Aircraft

A pinch of graphene could keep airplane wings ice-free

Both airplane wings and helicopter rotor blades are subject to one problem – they can both ice up. Although de-icing solutions can be applied when aircraft are on the ground, that doesn't stop ice from eventually forming once they're in the air. That's why scientists at Texas' Rice University have developed a new graphene-based coating that continuously melts ice by conducting an electrical current.

Read More
— Materials

Material one thousand times thinner than paper withstands the squeeze to retain its shape

Ultra-thin and lightweight, yet durable beyond the lab setting. These are the desirable attributes for scientists in pursuit of the next generation of versatile, high-performing wonder materials. Emphasizing one without compromising the others has been a tricky balancing act for engineers, but one team is now claiming a significant breakthrough. Its first-of-its-kind nanoscale plate is one thousand times thinner than paper and still manages to maintain its shape after being bent and twisted by a human hand.

Read More
— Materials

New process could see "white graphene" pairing with graphene in ultra-thin electronics

Monolayer-thick sheets of hexagonal boron nitride, or "white graphene," share many of the properties of graphene, including exceptional mechanical strength and thermal conductivity. But one important point of difference is its electrical conductivity, with graphene being a conductor, while white graphene is an insulator. Now researchers have developed a process to create a virtually perfect monolayer of white graphene, making a dream team pairing of graphene and white graphene substrate for use in next generation electronic devices a possibility.

Read More
— Materials

Graphene membrane makes for a more sensitive condenser microphone

Graphene's ever-growing list of remarkable properties has seen many wide-reaching potential applications for the wonder material proposed, but actual demonstrations of real-world uses are still thin on the ground. But that's slowly changing. Following a graphene-based light bulb headed for commercial release being revealed earlier this year, now scientists have developed a graphene-based condenser microphone that is more sensitive than its conventional cousins.

Read More
— Materials

Scientists produce graphene 100 times cheaper than ever before

Since first being synthesized by Andre Geim and Kostya Novoselov at the University of Manchester in 2004, there has been an extensive effort to exploit the extraordinary properties of graphene. However the cost of graphene in comparison to more traditional electronic materials has meant that its uptake in electronic manufacturing has been slow. Now researchers at the University of Glasgow have discovered a way to create large sheets of graphene at a fraction of the cost of current methods.

Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement