Decision time? Check out our latest product comparisons

Fusion

Lockheed sees its compact fusion reactor as ready in 10 years

Fusion reactors are a bit like buses; you wait forever for one, then two come along at once. No sooner does the University of Washington announce that it’s working on a breakthrough compact fusion reactor (CFR) than Lockheed Martin says that its Revolutionary Technology Programs unit, AKA the Skunk Works, in Palmdale, California has one that could be ready for market within ten years.  Read More

The University of Washington's HIT-SI3 experimental reactor (Photo: University of Washingt...

In the 21st century, the world lives with two futures ahead of it – one of looming energy shortages, and another of godlike energy abundance. The key to this whether it’s possible to turn fusion reactor technology from a laboratory exercise into a real-world application. Engineers that the University of Washington are working on a fusion reactor that, when scaled up, could produce energy on a practical scale, yet at a cost rivaling that of a conventional coal-powered plant.  Read More

Researchers used sound wave readings of NGC 2264 to determine the age of stars (Photo: SIR...

One of the long-standing difficulties in astrophysics has been a way to accurately determine the age of a star. Brand new stars are obvious from their location in or near "star nurseries" of interstellar gas and dust, and "adult" stars can be roughly characterized through various methods, including a calculation based on their mass and luminosity. Unfortunately, these methods are approximations at best. Researchers at KU Leuven's Institute for Astronomy have now discovered a way to distinguish young stars from older ones by measuring the acoustic waves that they emit using ultrasound technology.  Read More

A group of scientists are turning to Indiegogo to fund fusion power research (Image: LPP F...

A group of researchers at New Jersey-based LPP Fusion is turning to crowdfunding to demonstrate net power gain from a nuclear fusion reactor. The scientists plan to do this using a technique which is relatively little-known, but which they claim is scientifically sound and only relies on well-established science. Given enough funding, the researchers say they could design a US$500,000, 5 MW reactor that would produce energy for as little as 0.06 cents per kWh, all by the end of the decade.  Read More

Researchers at Imperial College London have devised a method of achieving light to matter ...

In what could be a landmark moment in the history of science, physicists working at the Blackett Physics Laboratory in Imperial College London have designed an experiment to validate one of the most tantalizing hypotheses in quantum electrodynamics: the theory that matter could be created using nothing more than pure light.  Read More

A metallic case called a hohlraum holds the fuel capsule for the NIF experiments (Photo: E...

In a perfect example of beating swords into plowshares, a team of scientists at the Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF) in California reached a milestone in the quest for practical fusion power using a process designed for the development and testing of nuclear weapons. The announcement in the February 12 issue of Nature claims that the team used the world’s most powerful laser barrage to produce a controlled fusion reaction where more energy was extracted from the fuel than was put into it.  Read More

A nuclear-powered spacecraft is one winning concept of NASA's Innovative Advanced Concepts...

A dozen inventors have received a chance to demonstrate the potential for their pet space projects as winners of NASA's 2013 Innovative Advanced Concepts Program Phase I awards. The award winners were chosen based on their potential to transform future aerospace missions by enabling either breakthroughs in aerospace capabilities or entirely new missions. Read on for a closer look at some of the most promising proposals with a view to how they would work, and where the tricky bits might be hiding.  Read More

Artist's concept of a fusion-drive ship

Traveling through deep space is a hazardous undertaking and choosing the right engine can mean the difference between a fast, successful mission and a slow one with mounting dangers of radiation sickness, equipment failures and personal conflicts. A team of researchers from the University of Washington (UW) and Redmond, Washington-based MSNW are aiming to expand the options by developing a new fusion drive rocket engine that promises to make possible a manned spacecraft that could reach Mars and return to Earth in months rather than years.  Read More

The RIKEN Linear Accelerator Facility outside of Tokyo, in which element 113 has been disc...

Led by Dr. Kosuke Morita at the RIKEN Nishina Center for Accelerator-based Science, a group of scientists specializing in the superheavy elements have established the clearest evidence yet for the synthesis of the a new element with the temporary name of ununtrium (element 113). Claims of discovering a new element in the 21st century are usually the result of lengthy experiments involving new detection methods and element 113, which was first reported in 2003, has been particularly elusive.  Read More

Three Sandia neutrister neutron generators mounted in a test box under vacuum

Neutron generators provide materials analysis and non-destructive testing tools to many industries, including oilfield operations, heavy mechanical construction, art conservancy, detective work, and medicine. Many of these applications have been limited by the rather large size of current industrial and medical neutron sources. Now Sandia National Laboratories, the lab that develops and supports the non-nuclear parts (including neutron generators) of nuclear weapons, has developed a new approach toward building tiny neutron generators.  Read More

Looking for something? Search our 29,159 articles