Advertisement

Energy

— Energy

Germany's Wendelstein 7-X fusion reactor produces its first flash of hydrogen plasma

Experimentation with Germany's newest fusion reactor is beginning to heat up, to temperatures of around 80 million degrees Celsius, to be precise. Having fired up the Wendelstein 7-X to produce helium plasma late last year, researchers have built on their early success to generate its first hydrogen plasma, an event they say begins the true scientific operation of the world's largest fusion stellarator.

Read More
— Environment

Plant openings signal "birth of large-scale solar in Australia"

According to the Energy Supply Association of Australia, Australia boasts the highest rate of household solar panel installation in the world. But despite much of the continent being seemingly perfect for large scale solar, it has been slow in coming to the sun-drenched country. That could be set to change with the official opening of two plants that AGL Energy managing director and CEO Andy Vesey says "signals the birth of large-scale solar in Australia".

Read More
— Science

Standout science and technology in 2015

The blistering advance of technology we are experiencing in the 21st century is nothing short of mind-boggling, and the rate of change being exponential, 2015 was by definition the busiest year yet. So before the Gregorian calendar keels over into 2016, let's take a wander through some of the year's most significant, salutary and attention-grabbing examples of scientific achievement, technological innovation and human endeavor.

Read More
— Energy

First plasma from Wendelstein 7-X fusion reactor

Testing of the Wendelstein 7-x stellarator has started with a bang, albeit a very very small one, with researchers switching on the experimental fusion reactor to produce its first helium plasma at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany. After almost a decade of construction work and more than a million assembly hours, the first tests have gone according to plan with the researchers to shift focus to producing hydrogen plasma after the new year.

Read More
— Environment

Metal makes for a promising alternative to fossil fuels

Clean fuels come in many forms, but burning iron or aluminum seems to be stretching the definition – unless you ask a team of scientists led by McGill University, who see a low-carbon future that runs on metal. The team is studying the combustion characteristics of metal powders to determine whether such powders could provide a cleaner, more viable alternative to fossil fuels than hydrogen, biofuels, or electric batteries.

Read More
— Architecture

Self-sufficient floating home to create its own water and energy

Living on a houseboat may seem very romantic, but the day-to-day misery of hauling water from shore and listening to the thump of the generator can soon take the icing off the cupcake. As a glimpse into what could be the future of aquatic living, two Fraunhofer Institutes and their partners are working on a self-sufficient floating home that creates its own water, electricity, and heat without looking like a works barge.

Read More
— Energy

Wendelstein 7-x stellarator puts new twist on nuclear fusion power

In a large complex located at Greifswald in the north-east corner of Germany, sits a new and unusual nuclear fusion reactor awaiting a few final tests before being powered-up for the very first time. Dubbed the Wendelstein 7-x fusion stellarator, it has been more than 15 years in the making and is claimed to be so magnetically efficient that it will be able to continuously contain super-hot plasma in its enormous magnetic field for more than 30 minutes at a time. If successful, this new reactor may help realize the long-held goal of continuous operation essential for the success of nuclear fusion power generation.

Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement