A five-year, US$19 million multi-institutional effort is working on developing a "desktop human" that could reduce the need for animal testing in the development of new drugs. The "homo minitus" is a drug and toxicity analysis system that would comprise four human organ constructs interconnected to mimic the response of human organs. The project has now reported success in the development of its first organ construct, a human liver construct that responds to exposure to a toxic chemical much like a real liver. Read More
In recent years, we've seen various research efforts looking to specifically target cancer cells as a replacement for the shotgun approach employed by chemotherapy that also damages healthy cells. The trick is to develop a delivery vehicle that identifies and targets only cancer cells, while ignoring the healthy ones. Researchers have found charged polymers have this ability, opening the door for nanoparticles containing cancer-fighting drugs to deliver their payload directly to the cancer cells. Read More
A common strategy for treating tumors is combining two or more drugs, which has the effect of decreasing toxicity and increasing the synergistic effects between the drugs. However, the efficacy of this kind of cocktail treatment suffers when the drugs require access to different parts of the cell, a bit like fighting a battle by depositing all your archers on the same spot as your infantrymen. By making use of nanoparticle-based carriers, researchers at North Carolina State University are able to transport multiple drugs into cancerous cells optimally and precisely, in maneuvers that any field commander would be proud of. Read More
If you remember the 1966 science fiction film Fantastic Voyage, you'll recall how miniaturized government agents traveled through blood vessels in a tiny submarine, in their attempt remove a blood clot from a scientist's brain. Synthetic nanomotors that can do the same job have been the subject of numerous research efforts and now University of California, San Diego (UCSD) researchers report that they've created powerful biodegradable "microswimmers" that can deliver drugs more precisely, derived from common plants like passion fruit and wild banana. Read More
The results of a years-long study with patients on antidepressants may help doctors predict one of the most severe side effects those medications can produce: treatment-emergent suicidal ideation (TESI). The condition is estimated to affect between four and 14 percent of patients, who typically present symptoms of TESI in the first weeks of treatment or following dosage adjustments. So far doctors haven’t had indicators to predict which patients are more likely to develop TESI, but a new test based on research carried out by the Max Planck Institute of Psychiatry in Munich, Germany, could change that. Read More
Proteins adopt their functional three-dimensional structure by the folding of a linear chain of amino acids. Gene mutation can cause this folding process to go awry, resulting in "misfolded" proteins that are inactive or, in worse cases, exhibit modified or toxic functionality. This is the cause of a wide range of diseases, but researchers have developed a technique that fixes these misfolded proteins, allowing them to perform their intended function, thereby providing a potential cure for a number of diseases. Read More
Most of us would swallow a pill before being poked by a needle, yet sufferers of chronic illnesses are regularly required to administer their medicine intravenously. A team of researchers from MIT and Brigham and Women's Hospital (BWH) has developed a new type of nanoparticle that could afford patients the choice – potentially making uncomfortable injections a thing of the past in the treatment of a range of chronic diseases. Read More
A team of researchers at Yale University has completed a molecular model for Alzheimer's disease by identifying a protein that plays a key role in its onset. Promisingly, the study showed that when the activity of this protein is blocked by an existing drug, mice engineered as models for human AD recover their memories. Read More
According to American Cancer Society estimates, lung cancer will account for 27 percent of all US cancer deaths in 2013, making it by far the leading cause of cancer death among both men and women. Part of the problem is getting the toxic chemotherapeutic drugs used to treat the cancer into the lungs. A new drug delivery system aims to overcome this problem by allowing the drugs to be inhaled, thereby delivering the drug where it is needed while reducing the harmful effects to other organs. Read More
Like so many other illicit drugs, cocaine can be extremely, destructively addictive. Recent research suggests, however, that ridding people of such addictions may be as simple as zapping them on them scalp. In a study conducted at the National Institutes of Health (NIH), and at the Ernest Gallo Clinic and Research Center at UC San Francisco, scientists were able to turn cocaine addiction on and off in rats via pulses of laser light to their brains. Read More