2014 Paris Motor Show highlights

Diabetes

The nano-network that releases insulin in response to changes in blood sugar

Aside from the inconvenience of injecting insulin multiple times a day, type 1 diabetics also face health risks if the dosage level isn’t accurate. A new approach developed by US researchers has the potential to overcome both of these problems. The method relies on a network of nanoscale particles that once injected into the body, can maintain normal blood sugar levels for more than a week by releasing insulin when blood-sugar levels rise.  Read More

The obese mouse on the right was fed a high-fat diet. The mouse on the left was fed the sa...

Researchers at the University of Michigan’s Life Sciences Institute have found that amlexanox, an off-patent drug used to treat asthma and canker sores, can also reduce obesity, diabetes and fatty liver disease in mice.  Read More

Led by Fàtima Bosch (fifth from left), a University of Barcelona research team has cured d...

Researchers from the Universitat Autònoma de Barcelona (UAB) have claimed a first by successfully using a single session of gene therapy to cure dogs of type 1 diabetes. The work has shown that it is possible to cure the disease in large animals with a minimally-invasive procedure – potentially leading the way to further developments in studies for human treatment of the disease.  Read More

Better understanding the structure of the humulone molecule found in hops could lead to mo...

A beer a day might not keep the doctor away but hops, one of the basic ingredients in beer brewing, could be good for you. In a development that could lead to better drug treatments of diabetes and cancer, University of Washington research associate professor of chemistry, Werner Kaminsky, has determined the exact structure of humulones and their derivatives – the acids in hops that give beer its distinctive bitter taste.  Read More

Images showing insulin (blue) molecules binding with insulin receptors (yellow) could help...

Despite decades of study, scientists remained unsure as to how insulin binds to the insulin receptor on the surface of cells to allow them to take up sugar from the blood and transform it into energy. Now, a definitive answer has now been found with a team of scientists capturing the first three-dimensional images of insulin “docking” to its receptor. It is hoped that the new knowledge can be exploited to develop new and improved insulin medications to treat type 1 and type 2 diabetes.  Read More

A team of scientists has devised a new approach to treating type II diabetes (Photo: Shutt...

According to the World Health Organization, there are currently 347 million diabetics worldwide, with 90 percent of those people having type II diabetes specifically. It occurs when fat accumulates in places such as muscles, blood vessels and the heart, causing the cells in those areas to no longer be sufficiently responsive to insulin. This insulin resistance, in turn, causes blood glucose levels to rise to dangerous levels. Ultimately, it can result in things such as heart disease, strokes, blindness, kidney failure, and amputations. Fortunately, however, an international team of scientists has just announced a new way of treating the disease.  Read More

The tiny biosensor can calculate a person's glucose levels from tears or sweat

Despite promising developments in recent years, millions of type-1 diabetes sufferers worldwide still face the often-painful daily burden of finger sticks to test their blood glucose levels. Now researchers at the Fraunhofer Institute for Microelectronic Circuits and Systems (IMS) have developed a biosensor that provides a non-invasive way to measure blood glucose levels and can transmit its readings wirelessly to a mobile device.  Read More

The identification of the mechanism that causes white fat cells to become brown fat cells ...

Earlier this year, a team from UC San Francisco reported on the discovery that a class of commonly prescribed type-2 diabetes drugs, called TZDs (thiazolidinediones, such as Actos and Avandia), promoted the conversion of energy-storing white fat cells into energy-burning brown fat cells. Now researchers at Columbia University Medical Center (CUMC) have identified the mechanism that causes this change to take place, potentially leading to new techniques to treat obesity and type-2 diabetes.  Read More

A chemical that affects the biological clock could help provide a new class of drugs to tr...

Scientists have long suspected that metabolic disorders, such as type 2 diabetes and obesity, could be linked to our circadian rhythm or biological clock. For example, laboratory mice with altered biological clocks often become obese and develop diabetes. Now biologists at UC San Diego have discovered that a chemical, which affects the activity of a key protein that regulates our biological clock, can repress the production of glucose by the liver, offering a promising new direction for the development of a new class of drugs to treat diabetes.  Read More

Scientists have developed a method of duplicating an individual person's unique immune sys...

Because everyone’s immune system is different, it’s impossible to predict with absolute certainty how any given person will react to a specific medication. In the not-too-distant future, however, at-risk patients may get their own custom-altered mouse, with an immune system that’s a copy of their own. Medications could be tried out on the mouse first, and if it showed no adverse reactions, then the person could receive them. If the person had an autoimmune disease, the mouse could also provide valuable insight into its treatment. A team led by Columbia University Medical Center’s Dr. Megan Sykes has recently developed a method of creating just such a “personalized immune mouse.”  Read More

Looking for something? Search our 28,960 articles