Advertisement

Chip

Electronics

Micro-supercapacitors store energy directly inside a chip

Batteries are getting better at a steady pace, but the technology is far from perfect – they are still quite short-lived, and have real trouble delivering bursts of power. Now, researchers at Drexel and the Paul Sabatier universities have managed to embed mini supercapacitors directly inside a microchip to enable electronics that are even smaller, last longer, and have more power to feed on.Read More

Electronics

"Designless" brain-like chips created through artificial evolution

Scientists at the University of Twente in the Netherlands have devised a new type of electronic chip that takes after the human brain. Their device is highly power-conscious, massively parallel, and can manipulate data in arbitrary ways even though it doesn't need to be explicitely designed to perform any task. The advance could pave the way for computers that think more like we do.

Read More
Electronics

Breakthrough photonic processor promises quantum computing leap

Optical quantum computers promise to deliver processing performance exponentially faster and more powerful than today's digital electronic microprocessors. To make this technology a reality, however, photonic circuitry must first become at least as efficient at multi-tasking as the microprocessors they are designed to replace. Towards this end, researchers from the University of Bristol and Nippon Telegraph and Telephone (NTT) claim to have developed a fully-reprogrammable quantum optical chip able to encode and manipulate photons in an infinite number of ways.Read More

Science

Steerable optical nanoantennas light the way for practical lab-on-a-chip devices

Using unidirectional cubic nanoantennas to direct the output from nanoemitters, researchers at Monash University in Australia have described a method to accurately focus light at the nanoscale. The practical upshot of which is substantial progress towards guided, ultra-narrow beams needed for the new world of nanoelectromechanical systems (NEMS) and the eventual production of entire lab-on-a-chip devices. Read More

Electronics

Smaller, faster, greener "high-rise" 3D chips are ready for Big Data

Stanford engineers have pioneered a new design for a scalable 3D computer chip that tightly interconnects logic and memory, with the effect of minimizing data bottlenecks and saving on energy usage. With further work, the advance could be the key to a very substantial jump in performance, efficiency, and the ability to quickly process very large amounts of information  –  known as "Big Data"  –  over conventional chips.Read More

Quantum Computing

New records bring super-powerful quantum computers closer to reality

In what are claimed to be new world records, two teams working in parallel at the University of New South Wales (UNSW) in Australia have each found solutions to problems facing the advancement of silicon quantum computers. The first involves processing quantum data with an accuracy above 99 percent, while the second is the ability to store coherent quantum information for more than thirty seconds. Both of these records represent milestones in the eventual realization of super-powerful quantum computers.Read More

Medical

Brain implant and high-tech sleeve used to bypass spinal cord and move paralyzed limbs

In what is being touted as a world first, a quadriplegic man has been given the ability to move his fingers and hand with his own thoughts thanks to the implantation of an electronic device in his brain and muscle stimulation sleeve. Part of a neurostimulation system dubbed "Neurobridge," the technology essentially bypasses the damaged spinal cord and reconnects the brain directly to the muscles. Read More

Computers

MIT's 110-core Execution Migration CPU chip moves instructions to the data

A 110-core CPU chip has been developed by computer scientists at the Massachusetts Institute of Technology. The chip is based on a new architecture in which instead of bringing data across the chip to the core that happens to want it, you move the program to the core where the data is stored. In practice, this new architecture reduces the amount of on-chip data exchange tenfold, along with the heat and infrastructure demanded by conventional chip architecture.Read More

Computers

Samsung moves into mass production of 3D flash memory

Samsung has announced production of the first solid state drives (SSD) based on its new 3D V-NAND flash memory. V-NAND flash memories read and write twice as fast as conventional NAND memories, and last 10 times longer while consuming 50 percent less power. At present, the 3D chips offer about the same physical bit density as do more conventional NAND flash memory chips, but while 2D geometries are reaching the end state of their scaling potential, the 3D chips offer as much as two orders of magnitude of additional elbow room for denser devices. Read More

    Advertisement
    Advertisement
    Advertisement
    Advertisement

    See the stories that matter in your inbox every morning

    Advertisement