Advertisement

Case Western Reserve University

It's a frustrating situation. There are already stem cells in the nervous system that are capable of repairing the damage done by multiple sclerosis, but getting them to do so has proven very difficult. Now, however, a multi-institutional team led by Case Western Reserve University's Prof. Paul Tesar may have found the answer – and it involves using medications that were designed to treat athlete's foot and eczema. Read More
Scientists from Case Western Reserve University's School of Medicine have discovered a potential treatment that may steer cancer cells toward their own destruction. The study focused on a particular gene that was found to influence levels of a tumor-fighting protein called 53BP1, the heightened presence of which makes cancer cells more vulnerable to existing forms of treatment. Read More
Scientists have struggled for decades to identify the constituent particles of dark matter, but they’ve had little to show for all their efforts. A new study at Case Western Reserve University is now advancing the radical new hypothesis that dark matter may in fact be made not of exotic subatomic particles, but rather of macroscopic objects which would mass anywhere from a tennis ball to a dwarf planet, be as dense as a neutron star, and still be adequately described by the Standard Model of particle physics. Read More
A new prosthetic system allows amputees to feel familiar sensations and also, somewhat unexpectedly, reduces their phantom pain. Researchers at Case Western Reserve University and the Louis Stokes Cleveland Veterans Affairs Medical Center developed the system to reactivate areas of the brain that produce the sense of touch, but recipients of prosthetic hands reported their phantom pain subsiding almost completely after being hooked up to the system. Read More
Victims of traumatic brain injuries often lose the ability to perform certain actions, due to the fact that two or more regions of their brain are no longer able to communicate with one another. However, in the same way that a spliced-in wire can circumvent a broken electrical connection, scientists have recently demonstrated that an electronic brain-machine-brain interface can restore lost abilities to brain-damaged rats. The research could lead to the development of prosthetic devices for treatment of injured humans. Read More

Researchers at Case Western Reserve University (CWRU) have been selected by ARPA-E, the US government's Advanced Research Projects Agency - Energy, to carry out a one year project aimed at developing a low cost method to obtain titanium metal from its ore. It is thought that the process could lower the cost of the metal by up to 60 percent. Read More

Quantum entanglement is the key to quantum computing, cryptography, and numerous other real-world applications of quantum mechanics. It is also one of the strangest phenomena in the Universe, overcoming barriers of space and time and knitting the entire cosmos into an integrated whole. Scientists have long thought that entanglement between two particles was a rare and fleeting phenomenon, so delicate that exposure of the particles to their surroundings would quickly destroy this linkage. Now mathematicians at Case Western University have shown that entanglement between parts of large systems is the norm, rather than being a rare and short-lived relationship. Read More
You probably don’t give a lot of thought to squid beaks, but they actually possess a pretty interesting quality. While the end of the beak is hard and sharp, the beak material gradually becomes softer as it nears the mouth. This means that there’s no abrupt boundary between the hard beak and the soft mouth, which could result in discomfort or injuries. Inspired by the squid, scientists at Ohio’s Case Western Reserve University have now developed a material with the same qualities, that could be used to create more comfortable, less harmful medical implants. Read More
Despite decades of study, scientists remained unsure as to how insulin binds to the insulin receptor on the surface of cells to allow them to take up sugar from the blood and transform it into energy. Now, a definitive answer has now been found with a team of scientists capturing the first three-dimensional images of insulin “docking” to its receptor. It is hoped that the new knowledge can be exploited to develop new and improved insulin medications to treat type 1 and type 2 diabetes. Read More
Although many people may think that the lenses in our eyes are just like those found in cameras, there is in fact one key difference between the two – while man-made lenses have just a single index of refraction, meaning that they only bend light in one direction, our natural lenses refract light by varying degrees. This is why artificial implanted lenses, such as those used to treat cataracts, can create visual distortions. A new technology, however, now allows for the fabrication of lenses that work just like the ones in our eyes. Read More
Advertisement