Photokina 2014 highlights

Black hole

Image of the Fornax cluster of galaxies with artistically enhanced purple areas representi...

A fresh analysis of data collected by NASA's WISE telescope has cast doubt on the widely accepted unified model for the composition of black holes. The study examined 170,000 supermassive black holes, and will require scientists to present new theories on the structure of these stellar giants.  Read More

Quantum black hole study finds bridge to another Universe (Image: Shutterstock)

Physicists have long thought that the singularities associated with gravity (like the inside of a black hole) should vanish in a quantum theory of gravity. It now appears that this may indeed be the case. Researchers in Uruguay and Louisiana have just published a description of a quantum black hole using loop quantum gravity in which the predictions of physics-ending singularities vanish, and are replaced by bridges to another universe.  Read More

A European Southern Observatory simulation of gas cloud G2 threading through the local sta...

As you read this, the eyes of the astrophysical world are focused on about one-trillionth of the sky, watching as the calm existence of G2, a three-Earth mass gas cloud near the galactic center, is viciously disrupted by a close encounter with Sagittarius A*, the galaxy's supermassive black hole. Careful observation of this rare event is expected to provide an enormous amount of information on the environment of the central light month (about 6,000 AU) immediately surrounding the black hole.  Read More

Emission of fluorescence x-rays from iron atoms in the accretion disk of a supermassive bl...

The rotation of a supermassive black hole (SBH) has been definitively measured for the first time by combining x-ray data obtained by the x-ray space telescopes XMM-Newton (soft x-rays) and NuSTAR (hard x-rays). The SBH at the center of a galaxy called NGC 1365 was found to be spinning at 84 percent of the maximum speed allowed by general relativity – or roughly speaking, the edge of the black hole is rotating at 84 percent of the speed of light.  Read More

Black holes blaze magenta in this NuStar photo of spiral galaxy IC342 (Photo: NASA)

Black holes, which abound in the Universe, convert matter into geometry – the larger the amount of matter that disappears through the event horizon, the larger they grow, with the only external sign of their presence being the warping of space due to their gravity. In the process, a great deal of extremely hot gas is generated, and that gas emits hard x-rays. Now NASA's NuSTAR space telescope can find black holes by forming high-resolution images of the cosmos in hard x-rays.  Read More

Looking for something? Search our 28,538 articles