Introducing the Gizmag Store

Artificial Muscles

Illustrations of a human heart doing the left ventricular twist (left), and the Harvard mo...

When you think of a beating heart, you probably just picture it flexing in and out, sort of like a rubber ball being squeezed by an invisible hand. In fact, though, its motion is more similar to that of a dish rag being wrung out, with the top of the organ twisting in a clockwise direction while the bottom contracts counterclockwise. It's known as the left ventricular twist, and scientists have now replicated it using artificial muscles. The research could lead to better-functioning cardiac implants, among other things.  Read More

The artificial muscles can lift 100 times as much weight as human muscles of the same size...

Artificial muscles could find use in a wide range of applications, including prosthetic limbs, robotics, exoskeletons, or pretty much any situation in which hydraulics or electric motors just aren't a practical means of moving objects. Scientists have been working on such muscles for a number of years, using materials like vanadium dioxide, graphene, carbon nanotubes and dielectric elastomers. Now, however, some of those same scientists have discovered that very powerful artificial muscles can be made from much more down-to-earth materials – regular polymer fishing line, and metal-coated nylon sewing thread.  Read More

Scientists have demonstrated a new type of robotic muscle with 1,000 times more power than...

If a so-called "rise of the machines" ever comes to fruition, our chances of survival may have just taken a big hit. A team of scientists from the US Department of Energy ’s Lawrence Berkeley National Laboratory has demonstrated a new type of robotic muscle with 1,000 times more power than that of a human's, and the ability to catapult an item 50 times its own weight.  Read More

Robots with artificial muscles would have superhuman strength (Image: Shutterstock)

It's a classic science fiction scene: an android is injured and its human-like exterior is laid bare to reveal the metallic gears and cables of its true mechanical nature. The future is, unsurprisingly, not likely to match this scenario as our ability to mimic biology with innovations like artificial muscles improves. The latest breakthrough in this field comes from the National University of Singapore’s Faculty of Engineering where researchers have developed a “robotic” muscle that extends like real muscle tissue to five times its original length, has the potential to lift 80 times its own weight and holds out the promise of smaller, stronger robots capable of more refined movements.  Read More

Crumpled graphene layered on a flexible polymer (Photo: Duke University)

Despite its numerous wondrous properties, a propensity to stick together and be difficult to flatten out once crumpled can make working with graphene difficult and limit its applications. Engineers at Duke University have now found that by attaching graphene to a stretchy polymer film, they are able to crumple and then unfold the material, resulting in a properties that lend it to a broader range of applications, including artificial muscles.  Read More

Looking for something? Search our 26,496 articles