Decision time? Check out our latest product comparisons

Antenna

Researchers at the military technology firm Chamtech have developed a special aerosol spra...

Soon, you may be able to correct your cell phone's signal problems by spraying on an antenna. Researchers at the military technology firm Chamtech have developed a special aerosol spray that can essentially add an antenna to whatever it's sprayed on and improve the network coverage in the area. The spray essentially covers a surface with thousands of nanocapacitors. Those nanocapacitors align themselves on the surface, and create a wireless antenna for the devices located in the area. The idea is essentially the nanocapactitors take care of all of the hard work involved in finding a wireless signal, making it easier for your phone or tablet to get connected and stay connected to a network.  Read More

Onur Hamza Karabey and his prototype liquid crystal antenna

Vehicles such as cars, ships and aircraft need to stay in stable contact with earth-orbiting satellites, in order for on-board functions like GPS, internet access and satellite television reception to work properly. As the vehicles move, their orientation to those satellites changes, so electronically-redirectable phased-array antennas are typically required. According to scientists at Germany's Technische Universität Darmstadt, however, these are "either very expensive or only sluggishly redirectable." That's why doctoral candidate Onur Hamza Karabey is working on a low-cost, fast-performing alternative - a liquid crystal antenna.  Read More

Scientists from Tel Aviv University are creating what could be much more efficient solar p...

Radio waves are a type of electromagnetic energy, and when they’re picked up by traditional metallic antennas, the electrons that are generated can be converted into an electrical current. Given that optical waves are also a type of electromagnetic energy, a team of scientists from Tel Aviv University wondered if these could also be converted into electricity, via an antenna. It turns out that they can – if the antenna is very, very short. These “nanoantennas” could replace the silicon semiconductors in special solar panels, which could harvest more energy from a wider spectrum of sunlight than is currently possible.  Read More

A rendering of DARPA's proposed tender satellite, in the process of removing the antenna f...

Satellites are very expensive to put into orbit. This is because the parts that they're built from are costly to make, but also because it requires so much energy to lift their considerable weight off the Earth's surface. It would then follow that satellites would cost less if they could use salvaged parts, and if they were lighter when lifting off from the launch pad. That's where DARPA's proposed Phoenix program comes into play. It would see a purpose-built spacecraft removing usable parts from the plethora of "dead" satellites currently in orbit, then leaving those parts for attachment to newly-arriving satellites.  Read More

A life vest incorporating one of the fabric antennas, being tested in Finland

A patch about the size of the leather name tab on a pair of jeans could save your life one day – should you be stranded at sea, that is. In a project overseen by the European Space Agency (ESA), researchers from Finnish company Patria and the Tampere University of Technology have created a flexible fabric antenna, that can be sewn into life vests. Once activated, that antenna transmits its coordinates to earth-orbiting satellites, that can immediately relay the location to rescue personnel.  Read More

The concept demonstrator system developed by BAE Systems incorporating Body Wearable Anten...

Reliable communications are almost as critical to the modern soldier as their weapons and ammunition. Conventional whip-antennas are not only cumbersome and conspicuous, but they don't always provide a reliable link between a soldier laying on the ground and one standing up. Meanwhile, the short antenna of a portable radio can mean the signal is masked by the user's body. To provide more reliable, continuous 360-degree radio coverage, BAE Systems has developed a series of Body Wearable Antennas (BWAs) that, like the experimental antenna system recently developed at Ohio State University, sees the antennas weaved into the fibers of a uniform.  Read More

Researchers have developed an antenna system that can be built into clothing, and that has...

In the recent past, we’ve seen outfits that incorporate bio-sensors and batteries, and even a bikini with integrated solar cells. One of the latest innovations in smart fabrics, however, allows a person’s clothing to act as multiple antennas. Developed at Ohio State University (OSU), the system could prove particularly useful to soldiers, who don’t want to be encumbered by a protruding whip antenna.  Read More

The eye pressure-monitoring millimeter-scale computing system (Photo: University of Michig...

Researchers from the University of Michigan have created what they claim is the world’s first millimeter-scale complete computing system, designed as an implantable eye pressure monitor for glaucoma patients. Incorporating a microprocessor, pressure sensor, memory, thin-film battery, solar cell and wireless radio with an antenna that can transmit data to an external reader device, the device is just over one cubic millimeter in size. The scientists see it as the next step in the evolution of ever-smaller and more efficient computers.  Read More

An example of the potential of body-to-body networks with live streaming of video at a con...

At a major sporting event I attended recently, it proved impossible to get a connection on a mobile network that was swamped as many of the 100,000 strong crowd attempted to contact friends and family. While the influx of calls was the result of a thrilling draw, it highlighted the weakness of overloaded communications networks that would struggle in the event of a disaster in a heavily populated area. A new system being developed by researchers at Queen’s University Belfast could turn this weakness into a strength by allowing members of the public carrying wearable sensors to form the backbone of new mobile Internet networks.  Read More

Marcel van de Burgwal's multiprocessor microchip

There was a time not so very long ago when people who wanted satellite TV or radio required dishes several feet across. Those have since been replaced by today’s compact dishes, but now it looks like even those might be on the road to obsolescence. A recent PhD graduate from The Netherlands’ University of Twente has designed a microchip that allows for a grid array of almost-flat antennae to receive satellite signals.  Read More

Looking for something? Search our 29,036 articles