Highlights from the 2014 LA Auto Show

New stamping process quickly and cheaply produces nanodevices

By

June 2, 2011

A scanning electron microscope image of a pattern imprinted on nanoporous gold, using DIPS...

A scanning electron microscope image of a pattern imprinted on nanoporous gold, using DIPS (Image: Weiss Lab)

Image Gallery (6 images)

Imagine how long it would have taken to produce vinyl record albums if, instead of pressing them from master molds, the grooves had to be etched into each individual LP? Well, that's pretty much been the case when it comes to creating devices from porous nanomaterials - the microscopic patterns necessary for their functioning have had to be applied to each individual nanodevice, requiring considerable time and a perfect environment. Now, however, researchers from Nashville's Vanderbilt University have developed a system for quickly stamping out whole batches of the devices.

Porous nanomaterials, first of all, are a class of rigid materials that are full of microscopic holes. Substances such as gold, silicon, alumina, and titanium oxide all come in nanoporous forms. The holes give the materials unique optical, electrical, chemical and mechanical properties, making them useful in applications such as drug delivery, chemical and biological sensors, solar cells and battery electrodes.

Typically, the manufacturing of devices from these materials must be performed in a clean room. The nanoporous surface is painted with a coating known as a resist, then exposed to ultraviolet light or scanned with an electron beam to create the necessary pattern. The material is then subjected to a series of chemical treatments, either to engrave the surface, or to apply new material.

A team led by Vanderbilt associate professor of electrical engineering Sharon M. Weiss has invented a new production system, that is much quicker, easier and less costly.

New stamping process quickly and cheaply produces nanodevices

While they still start with the traditional method, they use it to create a master stamp. That stamp can then be used to press out additional copies in less than a minute each, at room temperature and atmospheric pressure, regardless of their complexity. The process is called direct imprinting of porous substrates, or DIPS.

The team's first creation was a biosensor, that can identify organic molecules such as DNA, proteins and viruses. It features a grating made from porous silicon, that can be treated so that a target molecule will stick to it. If that molecule is present in a liquid sample, then it will cause laser light shined on the grating to diffract in a specific pattern.

They have since used DIPS to create highly-sensitive chemical sensors, and to produce shaped microparticles - this is done by using the stamp to cut right through the porous nanomaterial, like a cookie cutter. Microparticles made from porous silicon could find use as anodes in lithium-ion batteries, which would have a higher capacity than conventional li-ions, but not much more weight.

A single porous silicon microparticle, produced using DIPS (Image: Weiss Lab)

A single porous silicon microparticle, produced using DIPS

Weiss' team has reportedly already used some stamps over 20 times, with no signs of deterioration. The smallest pattern they have made so far measured in the tens of nanometers, or about the size of a fatty acid molecule.

The research was recently published in the journal Nano Letters.

About the Author
Ben Coxworth An experienced freelance writer, videographer and television producer, Ben's interest in all forms of innovation is particularly fanatical when it comes to human-powered transportation, film-making gear, environmentally-friendly technologies and anything that's designed to go underwater. He lives in Edmonton, Alberta, where he spends a lot of time going over the handlebars of his mountain bike, hanging out in off-leash parks, and wishing the Pacific Ocean wasn't so far away.   All articles by Ben Coxworth
Post a Comment

Login with your gizmag account:

Or Login with Facebook:


Related Articles
Looking for something? Search our 29,583 articles
Recent popular articles in Science
Product Comparisons