Photokina 2014 highlights

Science

The benefits of using sound to separate cells over conventional more aggressive methods me...

Researchers from MIT, Carnegie Mellon University and Pennsylvania State University have developed a novel technique of separating cells with the use of a gentle sound wave. The technique could potentially be used to screen a patient's blood, allowing medical practitioners to isolate rare tumor cells synonymous with diseases such as cancer.  Read More

The Stanford University water splitter could save hydrogen producers billions of dollars (...

A new emissions-free device created by scientists at Stanford University uses an ordinary 1.5-volt battery to split water into hydrogen and oxygen at room temperature, potentially providing a low-cost method to power fuel cells in zero-emissions vehicles and buildings.  Read More

A green anole, that has regrown the end of its tail

If you ever had a pet lizard as a child, it was quite likely a green anole. As is the case with other lizards, they have the ability to break off their own tail when attacked by a predator, and then regrow it. Scientists from Arizona State University recently announced that they have cracked the code regarding that tail regrowth process, and are now hoping that it could be applied to the field of regenerative medicine.  Read More

A flexible artificial skin is designed to wrap around objects and autonomously camouflage ...

A new device developed at the University of Houston can automatically sense its surroundings and blend into them in a matter of seconds, imitating the behavior of squids and other marine creatures. Once it is perfected, the prototype could have interesting applications for the military, or even make its way into consumer technology.  Read More

A moth in the NCSU flight-assessment rig

We've been hearing a lot about the development of tiny flying sensor-equipped robots, that could be sent into areas such as disaster sites to seek out survivors or survey the damage. However, why go to the trouble of designing those robots from scratch, when there are already ready-made insects that are about the right size? That's the thinking behind research being conducted at North Carolina State University, which is aimed at converting moths into "biobots."  Read More

Store-bought rubber bands like these become electrically-conductive when infused with grap...

Graphene is a cutting-edge wonder material, used in applications ranging from solar cells to supercapacitors. Rubber bands, on the other hand ... well, they're not so high-tech. By combining the one with the other, however, scientists have created ultra-cheap body motion sensors that could make a big difference in the field of health care.  Read More

Researchers have developed a high-performance electrode material for supercapacitors from ...

Using waste hemp fibers as the starting material, researchers at the University of Alberta in Canada have developed a high-performance electrode material for supercapacitors at one thousandth the cost of the more commonly used graphene. The advance could lead to supercapacitors that are both cheaper and able to operate under harsh environmental conditions.  Read More

Adding certain salts to the anodes of lithium-based batteries has been found to increase t...

Salt has long been used to preserve meat, and now researchers at Cornell University have found that adding certain salts to the anodes of lithium-based batteries can also increase their useful life by a very large factor, solving long-standing problems associated with cell degradation. The advance can be adapted to other metal-based chemistries, including the lighter and more energy dense lithium-sulfur cells and, according to the researchers, might see commercial applications in as little as three years.  Read More

Combining the high efficiency and low cost of perovskite with the simplicity of spray-on c...

Researchers at the University of Sheffield in the UK have created a spray-on solar cell that uses perovskite as the light-absorbing layer. Although the cell's efficiency is only a modest 11 percent, it can be manufactured very cheaply, paving the way for significant reductions in the cost of large-scale solar panel production.  Read More

Confocal microscope image of the artificial neural tissue developed at Tufts University

One approach to studying the brain rather than working on the whole thing at once is to examine small bits of it. With that in mind, researchers at the Tissue Engineering Resource Center at Tufts University, Boston have developed a three-dimensional brain-like tissue that is structurally similar to living rat brain tissue, functions enough like it for experimental purposes, and one that scientists have been able to keep alive for up to two months.  Read More

Looking for something? Search our 28,548 articles