Advertisement

Science

Storing data for longer than a few years is tricky enough with rapidly advancing technology, so what are you supposed to do if you need to store data for thousands or even millions of years? That's just the problem facing nuclear waste management companies, who need a way to warn future civilizations of hazardous sites that will withstand the test of time. Luckily a recent proposal may have the solution with a sapphire disk etched in platinum that could survive longer than humanity itself. Read More
For many people, the onset of warmer weather can mean pulling out the ol' scrubbing brush and getting to work on the slimy film of moss, algae, fungi and bacteria that has built up on the garden furniture over the colder months. But we may soon be able to say goodbye to this tiresome chore thanks to researchers at Fraunhofer who are developing coatings that would be activated by the sun’s rays to destroy organic substances attaching themselves to various surfaces. Read More
We all know that you need to exercise if you want to develop your muscles. As it turns out, however, exercise also makes lab-grown muscle implants more effective when introduced to the body. Scientists from North Carolina’s Wake Forest Baptist Medical Center have discovered that after being gently expanded and contracted, implants placed in lab animals were better able to stimulate new muscle growth than implants that were left “unexercised.” Read More
We’ve seen a number of next-generation display technologies emerge in recent years, such as Sony’s “Crystal LED,” Uni-Pixel’s time-multiplexed optical shutter (TMOS) technology, and quantum dot LED (QLED) display technology from LG and QD Vision, and now there’s another one to add to the mix. While displays based on the new “spintronic” OLED technology invented by physicists at the University of Utah are still some years off, the researchers say they should be brighter, cheaper and more environmentally friendly than the LEDs found in the current crop of TVs, computer displays, traffic lights and other electronic devices. Read More
Researchers at the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) have achieved a laser shot which boggles the mind: 192 beams delivered an excess of 500 trillion-watts (TW) of peak power and 1.85 megajoules (MJ) of ultraviolet laser light to a target of just two millimeters in diameter. To put those numbers into perspective, 500 TW is more than one thousand times the power that the entire United States uses at any instant in time. Pew-Pew indeed ... Read More
University of Wisconsin-Milwaukee (UWM) have identified an inexpensive nanorod catalyst with efficiencies rivalling that of platinum. Composed of nitrogen-enriched iron-carbon nanorods, the new catalyst holds the promise of cheaper, more efficient microbial fuel cells (MFCs) that generate their own hydrogen from waste water Read More

A friend of mine who works in television once told me how he was shooting a hockey game, and was impressed with his uncanny ability to keep the puck centered in the shot at all times ... it turns out that the “puck” he was following was actually a speck of dirt on his viewfinder. A new system from the University of Tokyo, however, can automatically follow moving objects such as pucks with amazing accuracy. Read More

Thanks to advances in stem cell therapy, it is now possible to use engineered white blood cells to fight diseases such as HIV within the human body. When such treatments are being developed, however, it can be difficult to track where the introduced cells travel within a patient’s system, and how many of them make it to their target. Now, thanks to research being carried out at the University of Edinburgh's Centre for Cardiovascular Science, those cells can be magnetically labeled. Read More
While they were each once hailed as the lightest solid material ever made, metallic microlattice and aerogel have now been moved back to second and third place (respectively), with aerographite taking the crown. Developed by a team from the Technical University of Hamburg and Germany’s University of Kiel, the material is composed of 99.99 percent air, along with a three-dimensional network of porous carbon nanotubes that were grown into each other. Read More
The problem with depending on one source of power in the drive toward the battery-free operation of small biomedical devices, remote sensors and out-of-the-way gauges is that if the source is intermittent, not strong enough or runs out altogether, the device can stop working. A small MIT research team has developed a low-power chip design capable of simultaneously drawing power from photovoltaic, thermoelectric, and piezoelectric energy sources. The design also features novel dual-path architecture that allows it to run from either onboard energy storage or direct from its multiple power sources. Read More
Advertisement
Advertisement