Top 100: The most desirable cars of all time

Carmat self-regulating artificial heart implanted in first human subject

By

December 24, 2013

Renderings of an implanted Carmat artificial heart

Renderings of an implanted Carmat artificial heart

Image Gallery (3 images)

Last Wednesday in Paris, a 75 year-old man received an artificial heart. That in itself might not be newsworthy, as such devices have been in use since the early 80s. In this case, however, the gadget in question was the first Carmat bioprosthetic artificial heart to ever be implanted in a human. According to its inventor, cardiac surgeon Alain Carpentier, it's the world's first self-regulating artificial heart.

When Carpentier uses the term "self-regulating," he refers to the Carmat's ability to speed up or slow down its flow rate based on the patient’s physiological needs – if they're performing a vigorous physical activity, for instance, the heart will respond by beating faster. This is made possible via "multiple miniature embedded sensors" and proprietary algorithms running on its integrated microprocessor.

Most other artificial hearts, by contrast, beat at a constant unchanging rate. This means that patients either have to avoid too much activity, or risk becoming breathless and exhausted quickly.

According to a Reuters report, although the Carmat is similar in size to a natural adult human heart, it's a little on the big side. It should therefore fit inside 86 percent of men, but only 20 percent of women – that said, the company has stated that a smaller model could be made. It's also almost three times heavier than a real heart, tipping the scales at approximately 900 grams (2 lb).

The Carmat is expected to be available within the European Union by early 2015, priced bet...

Power comes from an external lithium-ion battery pack worn by the patient, and a fuel cell is in the works. The heart itself is intended to operate continuously for at least five years (or 230 million beats) although in its first human trials, success will be gauged on whether or not it allows recipients to survive for at least another month. Needless to say, volunteers receiving the implant will already be in the final stages of heart failure.

The current lone recipient is reported to be recuperating in intensive care at Paris' Georges Pompidou European Hospital, where he is awake and carrying on conversations. "We are delighted with this first implant, although it is premature to draw conclusions given that a single implant has been performed and that we are in the early postoperative phase," says Carmat CEO Marcello Conviti.

Assuming the trials go well, the Carmat is expected to be available within the European Union by early 2015, priced between 140,000 and 180,000 euros (about US$190,000 to $250,000).

Prof. Carpentier developed the heart in collaboration with French aerospace firm EADS.

Sources: Carmat, Reuters

About the Author
Ben Coxworth An experienced freelance writer, videographer and television producer, Ben's interest in all forms of innovation is particularly fanatical when it comes to human-powered transportation, film-making gear, environmentally-friendly technologies and anything that's designed to go underwater. He lives in Edmonton, Alberta, where he spends a lot of time going over the handlebars of his mountain bike, hanging out in off-leash parks, and wishing the Pacific Ocean wasn't so far away.   All articles by Ben Coxworth
Tags
7 Comments

A wonderful device! I wonder how insurance companies and 'Obamacare' would cope with the price - versus human transplants - differential, allowing for availability and the human transplant on-going costs of anti-rejections drugs.

The Skud
26th December, 2013 @ 05:15 pm PST

To any one with a heart condition, a great news!

jgoulart5628
27th December, 2013 @ 09:38 am PST

Great invention.

This is another example of the good that comes out of the free enterprise system.

robo
27th December, 2013 @ 09:39 am PST

It's interesting to note that this was created in a place offering universal healthcare. No insurance companies to veto the treatment for profit motives.

dwreid
27th December, 2013 @ 05:25 pm PST

The proof of the pudding will be whether it can operate without forming and throwing off blood clots.

michael_dowling
27th December, 2013 @ 07:05 pm PST

Growing complete hearts or repairing a person's own heart using cells from the patient will likely make artificial hearts obsolete withing the next decade.

Gregg Eshelman
27th December, 2013 @ 09:43 pm PST

This medical device is way beyond the reach of the common man on the street. Its success will depend on how long it will work without problems

like Emboli which may in turn cause strokes and other problems like DVT

Haresh Metharam
17th January, 2014 @ 08:38 pm PST
Post a Comment

Login with your gizmag account:

Or Login with Facebook:


Related Articles
Looking for something? Search our 29,888 articles
Recent popular articles in Medical
Product Comparisons