Shopping? Check out our latest product comparisons

Flexible, biocompatible LEDs could light the way for next gen biomedicine

By

October 22, 2010

An LED array, transfer printed onto the fingertip of a vinyl glove

An LED array, transfer printed onto the fingertip of a vinyl glove

Image Gallery (6 images)

Researchers from the University of Illinois at Urbana-Champaign have created bio-compatible LED arrays that can bend, stretch, and even be implanted under the skin. While this might cause some people to immediately think “glowing tattoos!”, the arrays are actually intended for activating drugs, monitoring medical conditions, or performing other biomedical tasks within the body. Down the road, however, they could also be incorporated into consumer goods, robotics, or military/industrial applications.

Many groups have been trying to produce flexible electronic circuits, most of those incorporating new materials such as carbon nanotubes combined with silicon. The U Illinois arrays, by contrast, use the traditional semiconductor gallium arsenide (GaAs) and conventional metals for diodes and detectors.

An LED array, bending with a folded piece of paper

Last year, by stamping GaAs-based components onto a plastic film, Prof. John Rogers and his team were able to create the array’s underlying circuit. Recently, they added coiled interconnecting metal wires and electronic components, to create a mesh-like grid of LEDs and photodetectors. That array was added to a pre-stretched sheet of rubber, which was then itself encapsulated inside another piece of rubber, this one being bio-compatible and transparent.

The resulting device can be twisted or stretched in any direction, with the electronics remaining unaffected after being repeatedly stretched by up to 75 percent. The coiled wires, which spring back and forth like a telephone cord, are the secret to its flexibility.

A twisted strand of the LED array

Rogers and his associates are now working on commercializing their biocompatible flexible LED array via their startup company, mc10.

The research was recently published in the journal Nature Materials.

Via NatureNews

About the Author
Ben Coxworth An experienced freelance writer, videographer and television producer, Ben's interest in all forms of innovation is particularly fanatical when it comes to human-powered transportation, film-making gear, environmentally-friendly technologies and anything that's designed to go underwater. He lives in Edmonton, Alberta, where he spends a lot of time going over the handlebars of his mountain bike, hanging out in off-leash parks, and wishing the Pacific Ocean wasn't so far away.   All articles by Ben Coxworth
Tags
Post a Comment

Login with your gizmag account:

Or Login with Facebook:


Related Articles
Looking for something? Search our 28,236 articles