Advertisement

Colin Jeffrey

Colin Jeffrey

Colin discovered technology at an early age, pulling apart clocks, radios, and the family TV. Despite his father's remonstrations that he never put anything back together, Colin went on to become an electronics engineer. Later he decided to get a degree in anthropology, and used that to do all manner of interesting things masquerading as work. Even later he took up sculpting, moved to the coast, and never learned to surf.

Follow Colin:

— Telecommunications

World record Internet data transfer rate almost 50,000 times faster than broadband

At a blistering 1.125 terabytes per second, a new optical communication system developed by University College London (UCL) researchers has created a new record for the fastest ever data transfer rate for digital information. At the quoted rate, say the researchers, the entire HD series of the TV show Game of Thrones could be downloaded in less than one second.

Read More
— Medical

Implantable device translates thought into action for people with spinal injuries

Researchers in Australia have built an implantable brain-machine interface (BMI) that may give people with spinal cord injuries the ability to walk again using the power of their own thoughts. Consisting of a stent-based electrode, known as a "stentrode", implanted within a blood vessel of a patient's brain, along with a power supply and transmitter inserted under the skin in front of the shoulder, the new system creates a minimally invasive BMI that is capable of translating thoughts into action.

Read More
— Energy

Carbon dioxide from the air converted into methanol

The danger posed by rising levels of atmospheric carbon dioxide has seen many schemes proposed to remove a proportion it from the air. Rather than simply capture this greenhouse gas and bury it in the ground, though, many experiments have managed to transform CO2 into useful things like carbon nanofibers or even fuels, such as diesel. Unfortunately, the over-arching problem with many of these conversions is the particularly high operating temperatures that require almost counterproductive amounts of energy to produce relatively low yields of fuel. Now researchers at the University of Southern California (USC) claim to have devised a way to take CO2 directly from the air and convert it into methanol using much lower temperatures and in a correspondingly simpler way.

Read More
— Electronics

World's smallest optical switch uses a single atom

The rapid and on-going development of micro-miniature optical electronic devices is helping to usher in a new era of photonic computers and light-based memories that promise super-fast processor speeds and ultra-secure communications. However, as these components are shrunk ever further, fundamental limits to their dimensions are dictated by the wavelength of light itself. Now researchers at ETH Zurich claim to have overcome this limitation by creating both the world's smallest optical switch using a single atom, and accompanying circuitry that appears to break the rules by being smaller than the wavelength of the light that passes through it.

Read More
— Physics

Macroscopic quantum entanglement achieved at room temperature

In quantum physics, the creation of a state of entanglement in particles any larger and more complex than photons usually requires temperatures close to absolute zero and the application of enormously powerful magnetic fields to achieve. Now scientists working at the University of Chicago and the Argonne National Laboratory claim to have created this entangled state at room temperature on a semiconductor chip, using atomic nuclei and the application of relatively small magnetic fields.

Read More
— Electronics

Rechargeable paper sheets could help rewrite the book on electricity storage

Using millions of tiny fibers of nanocellulose sheathed with a conductive polymer coating, scientists have created sheets of paper that can store significant amounts of electric charge. Dubbed "power paper," the material is able to be recharged many hundreds of time, and in mere seconds. It is also lightweight, requires no toxic chemicals or heavy metals to create, and may offer a renewable and prolific way to provide energy to all manner of devices.

Read More
— Materials

New process could see "white graphene" pairing with graphene in ultra-thin electronics

Monolayer-thick sheets of hexagonal boron nitride, or "white graphene," share many of the properties of graphene, including exceptional mechanical strength and thermal conductivity. But one important point of difference is its electrical conductivity, with graphene being a conductor, while white graphene is an insulator. Now researchers have developed a process to create a virtually perfect monolayer of white graphene, making a dream team pairing of graphene and white graphene substrate for use in next generation electronic devices a possibility.

Read More
— Materials

Scientists produce graphene 100 times cheaper than ever before

Since first being synthesized by Andre Geim and Kostya Novoselov at the University of Manchester in 2004, there has been an extensive effort to exploit the extraordinary properties of graphene. However the cost of graphene in comparison to more traditional electronic materials has meant that its uptake in electronic manufacturing has been slow. Now researchers at the University of Glasgow have discovered a way to create large sheets of graphene at a fraction of the cost of current methods.

Read More
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement