Photokina 2014 highlights

Zhenan Bao

A prototype lithium-ion battery, that incorporates the polymer

In their continuing efforts to increase the energy density of lithium-ion batteries, scientists have began looking at alternative materials for those batteries' electrodes – materials such as silicon. The problem is, electrodes swell and shrink as they absorb and release lithium ions, causing them to break down over time. This is particularly true of silicon, which is brittle by nature. Now, however, scientists have developed a conductive elastic polymer coating for those electrodes, that heals its own cracks after each use.  Read More

Stanford scientists have used DNA molecules to assemble high-performance graphene transist...

A team of Stanford researchers has found a way to grow graphene nanoribbons using strands of DNA. This important development could be the key to large-scale production of graphene-based transistors that are orders of magnitude smaller, faster and less power-hungry than current silicon technology.  Read More

Stanford University researchers have developed a new, wearable sensor that could revolutio...

Researchers have developed a new type of wearable sensor that could greatly improve the accuracy and practicality of heart monitoring. Developed by Zhenan Bao, a professor of chemical engineering at Stanford University, the paper-thin, stamp-sized sensor is made with flexible organic materials and can be worn under an adhesive bandage on the wrist to monitor the pulse.  Read More

The material repairs itself in about 30 minutes after being sliced in half with a scalpel ...

Our largest bodily organ is also one of the most remarkable. Not only is our skin pressure sensitive, it is also able to efficiently heal itself to provide a protective barrier between our insides and the world around us. While we’ve covered synthetic materials that can repair themselves or are pressure senstive, combining these properties in a single synthetic material has understandably proven more difficult. Now researchers at Stanford University have developed the first pressure-sensitive synthetic material that can heal itself when torn or cut, giving it potential for use in next-generation prostheses or self-healing electronic devices.  Read More

Postdoctoral fellow Guihua Yu, Associate Professor Zhenan Bao and visiting scholar Lijia P...

Researchers at Stanford University have created an electrically conductive gel that feels and behaves like biological tissues, but conducts electricity like a metal or semiconductor. The gel can also be printed or sprayed as a liquid before being turned into a gel. The researchers say this combination of characteristics gives the gel enormous promise for developing new biological sensors and energy storage devices.  Read More

Stanford's stretchable pressure-sensitive material incorporates coatings of tiny 'nano-spr...

Robots, prosthetic limbs and touchscreen displays could all end up utilizing technology recently developed at California’s Stanford University. A team led by Zhenan Bao, an associate professor of chemical engineering, has created a very stretchy skin-like pressure-sensitive material that can detect everything from a finger-pinch to over twice the pressure that would be exerted by an elephant standing on one foot. The sensitivity of the material is attained through two layers of carbon nanotubes, that act like a series of tiny springs.  Read More

The flexible organic transistor, made with flexible polymers and carbon-based materials, t...

Last September we covered a story about a pressure-sensitive artificial skin developed at Stanford University that is so sensitive it can “feel” the weight of a butterfly. As part of a goal to create what she calls “super skin,” Stanford researcher Zhenan Bao is now giving the artificial skin the ability to detect chemical and biological molecules. Not only that, she has also developed a new, stretchable solar cell that can be used to power the skin, opening up the possibility of an artificial skin for robots that can be used to power them and enable them to detect dangerous chemicals or diagnose medical conditions with a touch.  Read More

Flexible transistors arrays with organic crystal rubrene around a glass vial (Credit: Stan...

Researchers at Stanford University have discovered a more reliable way of printing semiconducting organic compounds which also delivers improved performance - a breakthrough which could finally pave the way for the mass production of plastic electronics.  Read More

Looking for something? Search our 28,551 articles