Introducing the Gizmag Store

X-ray

A nanoparticle-based process allows blood clots to show up on a new type of CT scan (Image...

Every year, millions of people come into emergency rooms complaining of chest pains, yet those pains are only sometimes due to heart attacks. Unfortunately in many of those cases, the only way to be sure of what’s going on is to admit the patient for an overnight stay, and administer time-consuming and costly tests. Now, however, a new procedure could reveal the presence and location of a blood clot within hours. It’s made possible by the injection of nanoparticles, each containing a million atoms of bismuth – a toxic heavy metal.  Read More

Thijs van Oudheusden with his 'poor man's X-FEL' (Photo: Bart van Overbeeke)

If you want to obtain moving images of high-speed molecular processes at an atomic scale, one of the best facilities in the world is the X-ray Free Electron Laser (X-FEL) at Stanford University. Should you wish to use it, however, you’ll have get on a waiting list, then bring your materials to its California home once it’s your turn. If you’re thinking of building your own, you’d better start saving now – Stanford’s laser reportedly cost several hundred million dollars to build, and the cost of a new European X-FEL has been set at one billion euro (US$1.3 billion). Researchers from the Netherlands’ Eindhoven University of Technology (TU/e), however, have recently announced the development of a tabletop “poor man’s X-FEL.” It performs some of the same key functions as the big laser, but costs under half a million euro (US$656,006).  Read More

An image of the nucleus of a mouse adenocarcinoma cell showing the nucleolus and the membr...

When obtaining three-dimensional images of cells using a scanning electron microscope, individual cells are scanned one section at a time and those images are then put together to form one complete 3D picture of that cell – the process often takes a long time to complete. When using a fluorescence microscope, cells must first by dyed so that they show up against their surroundings. Now, a team from Helmholtz-Zentrum Berlin (HZB) have demonstrated a process called X-ray nanotomography, that can instantly obtain 3D images of cells in their almost natural state.  Read More

The image shows an x-ray radiograph of a resolution test target, with features as small as...

Researchers have created a tabletop device that produces synchrotron X-rays, the energy and image quality of which are as good as some of the largest, most expensive X-ray facilities on the planet. It uses a high power laser combined with a tiny jet of helium gas to produce an ultrashort high energy beam, that could be used for everything from examining molecules to checking the integrity of airplane wings.  Read More

The growth of nanoparticles from their very beginnings has been observed for the first tim...

We hear a lot about nanoparticles. The often unexpected properties of these tiny specks of matter are giving them applications in everything from synthetic antibodies to fuel cells to water filters and far beyond. Recently, for the first time ever, scientists were able to watch the particles grow from their earliest stage of development. Given that the performance of nanoparticles is based on their structure, composition, and size, being able to see how they grow could lead to the development of better growing conditions, and thus better nanotechnology.  Read More

Prof. Goren using his non-destructive XRF device

It’s rather ironic that in order to fully appreciate the value of an archeological artefact, part of that object must first be destroyed. That’s the way it has worked, at least, since the only way of determining the chemical composition of such items has been by breaking down a physical sample from them. As more and more institutions have decided to disallow sampling of their artefacts, however, it has become increasingly important to develop non-destructive methods of analysis. Recently, an archeologist from Tel Aviv University's Department of Archaeology and Ancient Near Eastern Civilizations developed just such a method - Professor Yuval Goren has adapted an off-the-shelf portable x-ray fluorescence (XRF) spectrometer to reveal the soil and clay composition of objects, simply by touching their surface.  Read More

Black Titanium created by a blast from femtosecond laser (Photo: Richard Baker, University...

Scientist Chunlei Guo discovered a way to change the surface of a variety of metals so they absorbed virtually all light by using intense laser light in late 2006. He followed up his “black metal” discovery in 2008 by discovering how to use the same basic process to alter surface properties to turn metals a variety of colors. Now Guo and his University of Rochester colleagues have discovered that the altered black metals can detect electromagnetic radiation with frequencies in the terahertz range, also known as T-rays, which have potential in medical and scientific scanning applications, as well as security scanners.  Read More

MIT researchers have developed a new way to tune the frequency of lasers that operate in t...

New research out of MIT could lead to smarter airport scanners able to detect the presence of drugs and explosives. At the heart of the development is a new approach to laser tuning designed to harness terahertz rays so that they can be used to determine an object's chemical composition.  Read More

The X-Ray Observatory set for launch after 2020 might be the spacecrafts to use femtosecon...

Theoretical work commissioned to the National Physical Laboratory (NPL) by the European Space Agency has recently concluded that lasers capable of generating extremely short pulses — known as "femtosecond comb lasers" — could be of great help in measuring the distance between two or more spacecraft to an accuracy of just a few microns, an essential component to formation flying space missions scheduled for the next decades.  Read More

The European XMM-Newton X-ray telescope in Earth orbit 
 (Image: ESA)

The German Aerospace Center (DLR) and Russia’s Roskosmos space agency are joining forces to try and shed some light on the poorly understood phenomenon referred to as ‘dark energy’. In 2012 the German 'extended Roentgen Survey with an Imaging Telescope Array'(eROSITA) X-ray telescope will be taken into orbit on board the Russian Spektrum Roentgen Gamma (SRG) satellite to start searching for black holes and dark matter in an attempt to answer why the expansion of the universe is accelerating instead of slowing down.  Read More

Looking for something? Search our 26,558 articles