Introducing the Gizmag Store

Wind Power

The University of Barcelona's Bernat Codina and Andriy Lyasota study data from the wind-pr...

There’s wind in that thar sky ... That’s the sort of thing that – conceivably – might be wistfully said by someone who is tasked with looking for locations in which to locate wind turbines. Their job could soon be getting a little easier, however, thanks to a new balloon-based wind-prospecting system.  Read More

Depiction of a cargo ship equipped with the Wind Challenger Project system of sails

Of the world's nearly 45,000 cargo ships, many burn a low-grade bunker fuel in their engines and produce pollution equivalent to millions of automobiles. To help reduce that toxic load and keep the price of shipping freight reasonable, engineers at the University of Tokyo (UT) and a group of collaborators have designed a system of large, retractable sails measuring 64 feet (20 m) wide by 164 feet (50 m) high, which studies indicate can reduce annual fuel use on ships equipped with them by up to 30%.  Read More

Altaeros Energies has been in touch to show Gizmag a video of its Airborne Wind Turbine in...

Remember the Airborne Wind Turbine covered by Gizmag towards the end of March? The creator of the prototype, Altaeros Energies, has been in touch to show us a video of the prototype in operation and we can confirm that a) it flies and b) the turbine goes round.  Read More

Altaeros Energies have created a floating wind turbine that produces low cost, renewable e...

Altaeros Energies has announced the first testing of its Airborne Wind Turbine (AWT) prototype that resembles a sort of blimp windmill. The test took place at the Loring Commerce Center in Limestone, Maine, USA where the AWT floated 350 feet (107 meters) into the sky and successfully produced power, before coming back to earth in a controlled landing. The turbine was deployed into the air from a towable docking trailer, while demonstrating that it can produce over twice the power at high altitudes than generated at conventional tower height  Read More

Heath Evdemon has designed a new kind of wind turbine based on reciprocating motion that's...

From huge kites to sea-bound flywheels and roof-top installations to tree-like art creations, we've seen many different approaches to capturing energy from the wind. One design, though, reigns supreme - the tri-blade turbine tower. It's not exactly a trouble-free life at the top and there are those who do not look upon these monsters favorably, most often complaining about the noise and the not so picturesque view. With support from Nottingham Trent University's Future Factory project, Heath Evdemon is currently building a new type of wind turbine called the Wind Harvester that's claimed to be virtually silent, doesn't need to loom high over the landscape and can operate in a variety of wind conditions.  Read More

The proposed WindFlip system would use barges that sink stern-first into the ocean, for tr...

While large offshore turbines can be very effective at harnessing the power of the wind, they do pose at least one challenge – how do you get them out into the ocean? One option is to bring them to their deployment site on board a ship, partially assembled, then put them together on location. Doing that kind of work on the pitching deck of a ship can be challenging, however, and requires crews to stay out at sea longer. Another option involves towing them from shore in their final, vertical orientation, but this requires an uninterrupted channel of deep water, and limits the speed at which they can be transported. Now, Norwegian company WindFlip is developing an alternative method that can accommodate shallow water, while allowing for relatively high transport speeds and a minimum amount of time spent putting the turbines in place.  Read More

The large kites in the KiteGen system are able to take advantage of high-altitude winds (I...

Wind-power has rapidly evolved over the last decade to become a key part of the alternative energy mix with towering rows of turbines now dotting horizons all over the globe. One of the drawbacks to the conventional windmill approach is that they are still low to the ground, so why not go to where the winds are stronger and more consistent - up. Like the Magenn Air Rotor System, KiteGen technology is aiming to do just that. The system generates energy by guiding tethered kites over a predefined flight path in order to rotate a ground based turbine and, while only in the testing and planning phases, it looks to be a promising solution.  Read More

Tethered to the base station, Wing 7 flying wind turbine ascends to a height of 1,300 feet...

Wind can be an unpredictable and unstable source of power, and high in the sky where it is more stable, it's difficult to exploit. Airborne wind turbines could provide a solution to this problem, but although the idea has been around since the 19th century, it's never been exploited on a larger scale. California's Makani Power aims to change that with its innovative flying wing turbine design. Wing 7 is essentially a cross between a UAV and a wind turbine that's tethered to a ground station from which it ascends to a height of around 1,300 feet (400m) and flies autonomously, generating up to 20-kilowatt of power in a 20mph (35km/h) wind.  Read More

The SeaTwirl's vertical wind turbine (1), torus ring (2), float assembly (3) and generator...

One of the main drawbacks of wind turbines is the fact that for maximum efficiency, the power that they generate must be fed into the grid right as the wind is blowing and their blades are spinning. While that power can be stored in batteries for later use, some of it will always be lost in the process. Sweden's experimental new SeaTwirl system, however, is designed to kinetically store wind energy until it's required - it's basically a seagoing flywheel.  Read More

The Caltech Field Laboratory for Optimized Wind Energy where arrays of closely spaced vert...

Although wind power energy production in 2010 was estimated to be only about 2.5 percent of worldwide electricity usage, wind turbines are considered a mature technology with many experts suggesting that we’re approaching the theoretical limit of individual wind turbine efficiency. For this reason, researchers are now looking at new approaches to wind farm design to increase the power output of wind farms. Researchers at the California Institute of Technology (Caltech) have been conducting a field study and claim the power output of wind farms can be increased at least tenfold by optimizing the placement of turbines on a given plot of land.  Read More

Looking for something? Search our 26,475 articles