Highlights from the 2014 LA Auto Show

Viruses and Bacteria

The Kinsa Smart Thermometer in use

When someone is feeling sick, you take their temperature to see if they’re running a fever. That’s the way it’s been for decades. However, all that a regular thermometer will tell you is their body temperature – it won’t tell you what they might have, or what you should do. The Kinsa Smart Thermometer, while not quite a medical tricorder, is designed to do those things.  Read More

A newly-developed device known as a soft x-ray electrostatic precipitator has demonstrated...

Help may be on the way for people with compromised immune systems, severe allergies, or who otherwise have to be wary of airborne nasties. A team of scientists have created something known as a soft x-ray electrostatic precipitator, or an SXC ESP for short. It filters all manner of bacteria, allergens, viruses, and ultrafine particles from the air – plus, it kills everything it catches.  Read More

Tobacco plants used in the development of the vaccine

A familiar news topic during the flu season is the difficulties that the authorities face in producing enough flu vaccine fast enough to control the outbreak. That’s a serious enough problem, but when the influenza outbreak turns out to be the start of a global pandemic, then hundreds of millions of lives could be at risk. To combat this, the Defense Advanced Research Projects Agency (DARPA) has developed a new way of making vaccines that has turned out 10 million doses of H1N1 influenza vaccine in a month, in a recent test run.  Read More

A 3D image of a rotavirus, constructed from data gathered using the new technique

Traditionally, in order to view tiny biological structures such as viruses, they must first be removed from their natural habitats and frozen. While this certainly keeps them still for the microscope, it greatly limits what we can learn about them – it’s comparable to an ichthyologist only being able to study dead fish in a lab, instead of observing live ones in the ocean. Now, however, researchers at the Virginia Tech Carilion Research Institute have devised a technique for observing live viruses in a liquid environment. It could have huge implications for the development of treatments for viral infections.  Read More

The chitin found in crab and lobster shells is being used in a process that could lead to ...

Crabs and lobsters ... they're not just for eating, anymore. Chitin, one of the main components of their exoskeletons, has recently found use in things such as self-healing car paint, biologically-compatible transistors, flu virus filters, and a possible replacement for plastic. Now, something else can be added to that list. Researchers from the Vienna University of Technology are developing a technique in which chitin is being used to cheaply produce a currently very-expensive source of antiviral drugs.  Read More

Scientists have used viruses to help create thin-film biomaterials, which may someday have...

It’s one of those enduring mysteries of nature – how can one biological substance end up becoming several different types of material? One example is collagen, a fibrous protein that can be made into body parts such as corneal tissue, cartilage, bone, and skin. In an effort to better understand such processes, scientists at the University of California at Berkeley decided to see if they could manipulate another biological building block into forming itself into different materials. They succeeded, using viruses known as M13 phages.  Read More

Plastic antibodies, such as this cluster of particles, may fight a wide range of human dis...

From bricks to jackets, it seems just about anything can be made using plastic nowadays. The latest items to get a plastic fantastic makeover are antibodies – proteins produced by the body’s immune system to recognize and fight infections from foreign substances. Scientists are reporting the first evidence that a plastic antibody works in the bloodstream of a living animal, opening up the possibility of plastic antibodies being custom tailored to fight everything from viruses and bacteria to the proteins that cause allergic reactions.  Read More

The one-inch wide by three-inch long Lawrence Livermore Microbial Detection Array that con...

Researchers from a national security laboratory in the U.S. have announced a technology which can detect the presence of thousands of microorganisms in just 24 hours. Hundreds of thousands of probes on a 1 x 3 inch glass slide can look for the entire range of known viruses and bacteria in a single test, which could prove invaluable in product safety testing, medical diagnosis and bioterrorism detection and prevention.  Read More

Biofuels excreted by genetically re-engineered bacteria may become part of the solution to...

August 2, 2007 If you ever doubt the creativity of modern science, just throw a serious challenge at it and watch the myriad responses you receive. Rising oil prices and historical data are signifying that Hubbert’s “peak oil” may be upon us, and the rush is on all over the world to find viable alternative energy sources to replace the dwindling crude that’s powered us into the technology age. But what if we could just ‘grow’ more oil? The deadly bacteria E. coli, might seem like an unlikely ally, but scientists in California are claiming they have successfully genetically manipulated the deadly bug and a host of other bacteria to produce pure hydrocarbon chains that can be processed into biofuels. In fact, they’re getting so good at it that they can coax the bacteria into producing a substance that’s exceptionally close to crude oil – minus the sulfur impurities that taint the oil we pump out of the ground - and ready to be put through a standard refinery to produce petrol, diesel, jet fuel or any other petroleum product. There’s also talk of other, far more pure and powerful fuels that need no further refinement before they go to the pump. Could the next great oil barons be bug farmers?  Read More

Clostridium Botulinum spores

May 28, 2007 Botulism toxin is the deadliest poison on the planet. 2kg of it is enough to kill every person on the planet - although this doesn't stop the rich and tasteless from injecting it into their faces as Botox, where it stops nerves from working and has a slight smoothing effect on wrinkles. The toxin is produced by the Clostridium Botulinum bacteria - and scientists at the UK's Wellcome Trust Sanger Institute have just completed some fascinating genome research on the development of this incredibly effective killer and its survival mechanisms. Where some bacteria use complex and even elegant methods to dance around our immune systems, C. Botulinum goes for the direct hit with a "microbial sledgehammer." More please, just around the jawline.  Read More

Looking for something? Search our 29,561 articles