Shopping? Check out our latest product comparisons

University of California

A UCR researcher is taking inspiration from the teeth of a marine snail to build the techn...

Inspired by the tough teeth of a marine snail and the remarkable process by which they form, assistant professor David Kisailus at the University of California, Riverside is working toward building cheaper, more efficient nanomaterials. By achieving greater control over the low-temperature growth of nanocrystals, his research could improve the performance of solar cells and lithium-ion batteries, lead to higher-performance materials for car and airplane frames, and help develop abrasion-resistant materials that could be used for anything from specialized clothing to dental drills.  Read More

VelociRoACH can achieve a running speed up to 2.7 meters per second or 26 body lengths in ...

The common cockroach may make your skin crawl, but it turns out the household pest is the perfect model for miniature legged robots. That's why Duncan Haldane and his colleagues at the University of California, Berkeley, have been studying the six-legged pests to improve their millirobots. Their latest creation, the VelociRoACH, is made primarily out of cardboard and measures just 10 cm long, yet it can run 2.7 meters per second, making it the fastest robot of its size, capable of covering 26 times its body length in a single second.  Read More

The CitiSense sensor provides smartphone users with real-time air quality readings for the...

Air quality is one of those things that many of us should be more concerned about, but aren’t. According to some people, this is because we’re not easily able to know how clean the air around us really is – we just assume it’s “clean enough.” Computer scientists at the University of California, San Diego have set out to change that. They’re developing a compact, portable air pollution sensor that communicates with the user’s smartphone, to provide real-time air quality readings for their immediate surroundings.  Read More

CalTech's new nanofocusing plasmonic waveguide

Engineers at the California Institute of Technology (CalTech) and the University of California at Berkeley have developed a nanofocusing waveguide, a tiny passive plasmonic device which is capable of concentrating light onto a spot a few nanometers in size. In so doing, they have sidestepped the diffraction-limited nature of light, which normally prevents focusing light to a spot smaller than its own wavelength. This remarkable feat may lead to new optoelectronic applications in computing, communications, and imaging.  Read More

The tattoo-based solid-contact ion-selective electrode – or 'smiley-face tattoo,' if you p...

Next time you see an adult with a stick-on tattoo, don’t laugh – that person might have a metabolic problem, or they could be a high-performing athlete who’s getting their training schedule fine-tuned. No, really. A team lead by Dr. Joseph Wang at the University of California, San Diego, has created a thin, flexible metabolic sensor that is applied to the skin ... and it takes the form of a smiley-face tattoo.  Read More

Full-color image of Mercury from MESSENGER's first flyby (NASA/Johns Hopkins University Ap...

The MESSENGER spacecraft has made a compelling case for the presence of water in the form of ice on the surface of the Solar System's smallest and innermost planet, Mercury. The case is supported by three independent groups of evidence from different sensors aboard the Mercury orbiter.  Read More

Brazilian oil platform P-51 (Image: Agência Brasil/Wikipedia)

Recent years have seen much progress in the development of invisibility cloaks which bend light around an object so it can't be seen, but can the same principles be applied to ocean waves that are strong enough to smash steel and concrete? That's the aim of Reza Alam's underwater “invisibility cloak.” The assistant professor of mechanical engineering at the University of California, Berkeley, recently outlined how to use variations of density in ocean water to cloak floating objects from dangerous surface waves.  Read More

Researchers believe they have cracked the code of spectrum efficiency (tower: Shutterstock...

Wireless carriers love to talk about a Spectrum Crunch. Like oil, wireless spectrum is a finite resource. Companies like AT&T warn that smartphone proliferation is eventually going to leave those "wells" dry. Carriers' answers to the problem usually involve government (less regulations, and more federally-owned spectrum released). However, researchers at U.C. Riverside have another solution: make those networks more efficient.  Read More

Graduate student Zachary Baer works with a fermentation chamber to separate acetone and bu...

Researchers at the Energy Biosciences Institute (EBI) are generating bio fuels from renewable sources, such as sugar and starch, using a process that could be commercialized in as little as five to ten years. Although the fuels are currently more expensive to produce than those made from petroleum, they contain more energy per gallon than ethanol and the researchers say that, if adopted, could help to cut greenhouse gas emissions from transportation.  Read More

Miroslav Krstic (left) and UC President's Postdoctoral Fellow Scott Moura have developed e...

The single biggest factor hindering the convenience, and therefore the adoption, of electric vehicles is the batteries used to power them. While filling up an ICE vehicle takes just a few minutes at the pump, electric vehicle recharge times are measured in hours. Engineers at the University of California, San Diego, have developed new algorithms that improve the efficiency of existing lithium-ion batteries and could allow them to be charged twice as fast than is currently possible.  Read More

Looking for something? Search our 28,266 articles