Decision time? Check out our latest product comparisons

University of California Berkeley

The sound energy forms a 3D acoustic bottle of high-pressure walls and a null region in th...

Using a technique that has possible applications in acoustic cloaking, sonic levitation, ultrasonic imaging, and particle manipulation, scientists at the University of California Berkeley claim to have produced a "bottle" beam of acoustic energy in open air that can precisely redirect sound waves. Able to bend these waves along set trajectories without the need for waveguides or other mechanical assistance, the bottle beam is also able to flow around objects in its path while maintaining its shape.  Read More

Researchers at the University of California, Berkeley, have devised a method of using ligh...

The trouble with existing 3D imaging technology is that – at the consumer level, at least – it tends to struggle with distances beyond a few feet. Put even a third of the width of a basketball court between yourself and a Microsoft Kinect sensor, for instance, and it won't pick up your movements at all. Researchers at the University of California, Berkeley, claim to have developed a Lidar (light radar)-based system that can remotely sense objects across distances as long as 30 feet (10 m), which could have widespread benefits in fields as diverse as entertainment, transportation, robotics, and mobile phones.  Read More

The interactive electronic skin developed at UC Berkeley (Photo: Ali Javey/Chuan Wang, Ber...

The stereotype of the clumsy robot may soon become a thing of the past thanks to ongoing research at the University of California, Berkeley, where a team of engineers has created a thin and interactive sensor network that can be layered onto the surfaces of virtually any shape. The device gives out immediate feedback via an LED light when touched, and could be used to create smart bandages that monitor vitals in a patient in real time, wallpapers that act as touchscreens, or even to give humanoid robots that elusive "human touch."  Read More

Berkeley scientists have created the first map of how the brain organizes what we see (Ima...

How does our brain organize the visual information that our eyes capture? Researchers at the University of California, Berkeley, used computational models of brain imaging data to answer this question and arrived at what they call “continuous semantic space” – a notion which serves as the basis for the first interactive maps showing how the brain categorizes what we see.  Read More

Looking for something? Search our 29,005 articles